Organic –inorganic metal halide perovskite light sensitizer is a fast-growing field in photovoltaic which reached a maximum certified efficiency of 22.1%. Contact layer engineering is widely focused areas in the field of perovskite solar cell to increase power conversion efficiency and stability of the cell. PEDOT: PSS is a reliable organic hole transporting material showing intact performance for inverted perovskite solar cell. A nanocomposite of Functionalised multiwalled carbon nanotubes (f-MWCTs) and PEDOT: PSS are functioned as hole transporter. f-MWCTs are taken in two different volume percentages such as 10% volume of PEDOT: PSS, 20% volume of PEDOT: PSS are added to 250µL of PEDOT: PSS to prepare the composite. Transmittance and surface morphology of PEDOT: PSS-f-MWCTs nanocomposite film is analysed. UV-Visible spectrum of MAPbI3 thin film shows an energy gap in between 1.5-1.6eV. In PL-spectrum of MAPbI3 an intense peak is at 428nm. XRD analysis confirms hexagonal phase of MAPbI3. An inverted perovskite solar cell with architecture FTO glass substrate/ PEDOT: PSS-F-MWCTs nanocomposite/ MAPbI3/ TiO2 compact layer/ FTO glass substrate is fabricated and current voltage characterisations are taken. XRD and SEM analysis of TiO2 film is taken. All the synthesis process and fabrication of the cell is carried out at ambient atmospheric conditions. Addition of 20V% of f-MWCTs increase the fill factor to 31% from 21%. MWCTs increase the number of minority carriers in PEDOT: PSS hole conductor. These minority carriers recombine with the positive vacancy formed in the perovskite light absorber. Hence only a smaller number of holes can transfer through PEDOT: PSS. This leads to lowering the value of Isc and retards the performance of the cell.

1.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
and
T.
Miyasaka
,
J. Am. Chem. Soc.
,
131
,
6050
6051
(
2009
).
2.
J.H.
Noh
,
N.J.
Jeon
,
Y.C.
Choi
,
M.K.
Nazeeruddin
,
M.
Grätzel
, and
S. I.
Seok
,
J. Mater. Chem. A
,
1
,
11842
11847
(
2013
).
3.
I.
Jinchu
,
B.
Krishnan
,
C. O.
Sreekala
,
N.
Balakrishnan
,
U. S.
Sajeev
and
K. S.
Sreelatha
, "
Escalating the performance of perovskite solar cell via electrospun TiO2 nanofibers
,"
2016 International Conference on Electrical, Electronics, and Optimization Techniques
(
IEEE Xplore
2016
),
4158
4160
.
4.
X.
Wang
,
Li
,
Z.
,
Xu
,
W.
,
Kulkarni
,
S. A.
,
Batabyal Sudip
Kumar
,
Zhang
,
S.
,
Cao
,
A.
, and
Wong
,
L. Helena
,
Nano Energy
,
11
,
728
735
(
2015
).
5.
X.
Wang
,
Kulkarni
,
S. A.
,
Li
,
Z.
,
Xu
,
W.
,
Batabyal Sudip
Kumar
,
Zhang
,
S.
,
Cao
,
A.
, and
Wong
and
L.
Helena
,
Nanotechnology
,
27
,
20LT01
(
2016
).
6.
J.
You
,
Z.
Hong
,
Y.
Yang
and
H.
Zhou
,
ACSNano
,
8
,
1674
1680
(
2014
).
7.
Q.
Guo
,
C.
Wang
,
J.
Li
,
Y.
Bai
,
F.
Wang
,
L.
Liu
,
B.
Zhang
,
T.
Hayat
,
A.
Alsaedi
and
Z.
Tan
,
Phys. Chem. Chem. Phys.
,
20
,
21746
21754
(
2018
).
8.
Y.
Zhang
,
W.
Liu
,
F.
Tan
, and
Y.
Gu
,
J. Power Sources
,
274
,
1224
1230
(
2015
).
9.
J.
Niu
,
D.
Yang
,
X.
Ren
,
Z.
Yang
,
Y.
Liu
,
X.
Zhu
,
W.
Zhao
and
S.
Liu
,
Organic Electronics: physics, materials, applications
,
48
,
165
171
(
2017
).
10.
D. J.
Yun
,
K. P.
Hong
,
S. H.
Kim
,
W. M.
Yun
,
J.Y.
Jang
,
W. S.
Kwon
,
C. E.
Park
and
S. W.
Rhee
,
ACS Appl. Mater. Interfaces
,
3
,
43
47
(
2011
).
11.
J.
Mannayil
,
M. R
Shijesh
,
J.
Sankaran
,
R.
Raman
and
M.K.
Ezhutachan
,
Physica status solidi (a)
,
215
,
1701003
1701003
(
2018
).
12.
A.
Ramachandran
,
I.
Jinchu
and
C. O.
Sreekala
, "
Studies on polymer based counter electrodes for DSSC application
,"
2016 International Conference on Electrical, Electronics, and Optimization Techniques
(
IEEE Xplore
2016
),
4628
4630
.
This content is only available via PDF.
You do not currently have access to this content.