The growth of a country entirely depends upon the industrialization expansion and agricultural production. Such industrial expansion also results ultimately in the accumulation of pollutants to a larger extend particularly in all segments of the environment. Among them, water pollution caused by textile dye industries contaminates the entire irrigational water stream. Hence it has become a challenging role for the technocrats and material science researchers to find an alternate solution to minimize the extent of pollution caused. Among many Conventional methods AOP (Advanced Oxidation Process) was chosen as an alternative method to treat polluted water. The aim of the present research work is to synthesize an azomethine polymer (PAZ) through polycondensation polymerization technique, semiconductor nanoparticles such as TiO2 through simple precipitation methodology and composite materials constitute of synthesized nanoparticles in polymeric resin such as TiO2 doped PAZ (PNT) through Ultrasonication method. The structural characterisation was justified using FTIR, XRD, EDAX TEM, and UV-DRS studies. The synthesized catalytic materials were used for the photodegradation of dyes such as Methyl Orange (MO) and Alizarin Red S (ARS). The parameters influencing the photodegradation of the dyes such as effect of initial dye solution concentration and period of contact required for the maximum dye removal were analyzed. The photocatalyic nature of the semiconductor nanomaterials and polymeric nanocomposite obeyed the application of Langmuir-Hinshellwood (L-H) kinetic model. The synthesized catalyst materials were found to be stable even upto 5 cycles without losing its catalytic nature.

1.
Z.
Yue
,
J.
Ru
,
G.
jiang
,
F.
Qian
,
X.
Ling
and
Z.
Ming
,
Separation and purification technology
74
,
187
(
2010
).
2.
P.
Govindhan
,
C.
Pragathiswaran
,
J. Material science: Mater. Electron
60
,
8778
(
2016
).
3.
H.
Al-Kandari
,
A.M.
Abdullah
,
A. M.
Mohammed
,
S.
Al-Kandari
,
J. Mater. Sci.
74
,
1
(
2016
).
4.
S.
Rani
,
M.
Aggarwal
,
M.
Kumar
,
S.
Sharma
and
D.
Kumar
,
Water Sci.
98
,
51
(
2016
).
5.
D.
Wu
,
F.
Wang
and
Yuanbin
,
C.
Li
,
RSC Adv.
6
,
73522
(
2016
).
6.
V.
Loryuenyong
,
J.
Charoensuk
,
R.
Charupongtawitch
,
A.
Usakulwattana
,
A.
Buasri
,
J. Nanosci. Nanotechni.
16
,
7705
(
2016
).
7.
S.
Shahabuddin
,
N. M.
Sariah
,
S.
Mohamad
and
J. J.
Ching
,
Polymers
,
8
,
27
(
2016
).
8.
X.
Zhou
,
B.
Jin
,
J.
Luo
,
X.
Xu
,
L.
Zhang
,
J.
Li
and
H.
Guan
,
RSC Advances
,
6
,
8703
(
2016
).
9.
D.
Pathanaia
,
D.
Gupta
,
A. H.
Al-Muhtaseb
,
G.
Sharma
,
A.
Kumar
,
M.
Nausad
,
T.
Ahamed
, and
S. M.
Alshehri
,
J of photochemistry and photobiology A: Chemistry
,
329
,
61
(
2016
).
10.
T.
Abdiriyum
,
A.
Ali
,
R.
Jamal
,
Y.
Osman
and
Y.
Zhang
,
Nano research letters
,
9
,
89
(
2014
).
11.
N.
Madhusudhaa
,
K.
Yogendra
and
K.M.
Mahadevan
,
Research Jr of chemical sciences
,
2
(
5
),
128
(
2012
).
12.
D.
Gu
,
B.
Yang
and
Y.
Hu
,
Catal. Lett.
118
,
863
(
2007
).
13.
A.
Mahyar
,
M. A.
Behnajady
and
N.
Modirshahla
,
Photochemistry and photobiology
,
87
,
795
(
2011
).
14.
S. M.
Tripathi
,
D.
Tiwari
and
A.
Ray
,
Electrical Indian Jr. of Chemistry
,
53A
,
1502
(
2014
).
15.
R.
Arora
and
A.
Srivastav
,
Utam Kumar
Mandal
,
IJMER
,
2
(
4
),
2384
(
2012
).
16.
A.
Mostafaei
and
A.
Zolriasatein
,
Progress in natural science: Materials International
22
(
4
),
273
(
2012
).
17.
S. J.
Pradeeba
,
K.
Sampath
and
A.
Ramadevi
,
Cluster computing
,
1
(
2018
).
18.
S. J.
Pradeeba
and
K.
Sampath
,
Journal of Ovonic Research
,
14
(
3
),
243
(
2018
).
19.
S. J.
Pradeeba
and
K.
Sampath
,
Journal of Dynamic Systems, Measurement, and Control
,
141
,
1
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.