Cerium Europium co-doped Strontium barium niobate (SBN) nano ceramic systems at different concentrations were prepared by sol gel method. The structural properties were characterised by X-ray diffraction, FTIR and Raman spectroscopy. X-ray diffraction analysis confirms the tetragonal structure of the prepared system. EDAX analysis confirms the components present in the sample. SEM image shows the needle like morphology of the nano system. XRD image confirms the particle size and crystalline planes of the prepared nanosized cerium europium doped SBN with the standard value. The broad absorption peak at 291 and 273 nm were observed for 0.1, 0.2 % Cerium, Europium co-doped SBN nano system. The absorption in the samples is from direct transition and the values of energy gap were calculated as 2.11 eV and. 2.27 eV. Photoluminescence studies shows the broad emission peaks at 419, 447, 493 nm due to 5d-4f Ce3+ transition levels. The peaks at 440, 449 nm were also observed due to the emission from SBN and less intense peaks at 558, 576, 588 nm due to the 5D07F0, 7F1 transitions of Eu3+ when excited at 305 nm wavelength. From the measured luminescence decay profiles, the tri-exponential lifetime of the 0.1% Cerium, Europium co-doped SBN nano system was calculated at 440 nm emission wavelength. Therefore the cerium europium co-doped SBN can be used for optical applications.

1.
M.
Hisaka
,
J. Opt. Soc. Am. B
17
,
422
426
(
2000
).
2.
Yingbang
Yao
,
Int. J. Appl. Ceram. Technol.
6
,
671
678
(
2009
).
3.
Jian
Li
.,
J. Appl. Phys.
101
,
013516
(
1-4
) (
2007
).
4.
T.
Volk
,
Opt. Mater.
18
,
179
182
(
2001
).
5.
R.
Fischer
,
Appl. Phys. Lett.
89
,
191105
(
2006
).
6.
J.
Nuja
,
Spectrosc. Lett.
44
(
5
),
334
339
(
2011
).
7.
S. H. Kshirsagar A. N.
Tarale
,
J. Mater Sci: Mater Electron
27
,
375
385
(
2016
).
8.
E. M.
Rodriguez
,
J. Appl. Phys.
100
,
113114(1-8)
(
2006
).
9.
J. J.
Romero
,
Appl. Phys. Lett.
78
,
1961
1963
(
2001
).
10.
A.
Andresen
,
Phys. Rev. B
77
,
214102(1-10)
(
2008
).
11.
H.
Liu
,
J. Appl. Phy.
91
, (
1
)
129
(
2002
).
12.
Kenta
Miura
,
J. Materials Science and Chemical Engineering
03
No.
08
(
2015
).
13.
R. N.
Das
and
P.
Pramanik
,
Mater. Lett.
46
,
7
14
(
2000
).
14.
Sang-Won
Choi
,
J. Korean Physical Society
33
(
3
)
333
336
(
1998
).
15.
Tadayuki
Imai
,
J. Optical Society of America B
15
(
7
)
2161
2168
(
1998
).
16.
T.
Kolodiazhnyi
,
Appl. Phys. Lett.
,
104
[
11]
111903–1
110903–3
(
2014
).
17.
S.
Lee
,
Appl. Phys. Lett.
,
96
[
3]
031910–1
031910–3
(
2010
).
18.
J.A.
Bock
,
Phys. Rev. B
,
90
[
11]
115106-1
115106-8
(
2014
).
19.
Asit B.
Panda
,
Mater. Lett.
52
,
180
186
(
2002
).
20.
J.
Nuja
,
Spectrosc. Lett.
45
,
184
189
(
2012
).
21.
Nuja
John
,
AIP Conference Proceedings
1849
,
020010
(
2017
).
22.
23.
H. R.
Xia
,
Phys. Rev. B
55
,
14892
14898
(
1997
).
24.
P. K.
Patro
,
Mat. Res. Bull.
38
,
249
259
(
2003
).
25.
H.
Liu
,
J. Lumin.
108
,
37
41
(
2004
).
26.
A. P.
Zambare
and
K.V.R.
Murthy
,
Archives of Phys. Res.
2
(
3
),
46
50
(
2011
).
27.
R.
Reisfeld
and
C. K.
Jorgensen
,
Hand book on the Physics and Chemistry of Rare Earths
9
(
Elsevier
,
North Holland
1987
)
13
.
28.
Jongmin
Roh
,
J. Materials Science and Chemical Engineering
,
3
,
30
34
, (
2015
).
29.
R. S.
Meltzer
,
Phys. Rev.
60
,
14012
(
1999
).
30.
N. S.
Singh
,
Chem. Phys. Lett.
480
,
237
(
2009
).
31.
L.
Yu
,
Phys. Chem.
8
,
303
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.