The Monte Carlo simulation method is now widely applied to materials science and engineering to the study of the kinetics of grain growth in two dimensions. This review Survey includes the grain growth kinetics, Grain Size and Grain Distribution by Monte Carlo simulation method. The initial distribution of orientations is chosen at random and the system evolves so as to reduce the number of nearest neighbor pairs of unlike crystallographic orientation. The temporal evolution of the microstructure is monitored to yield the time dependence of the size and shapes of the grains. A procedure incorporating the Metropolis algorithm which helps in developing the code for computer simulation is given as examples, two codes written using MATLAB software to simulate microstructure evolution using 2D ISING and POTTS Q-States Model would be demonstrated.

1.
M.
Anderson
,
D.
Srolovitz
,
G.
Grest
, and
P.
Sahni
,
Acta Metall.
32
,
783
(
1984
).
2.
M.
Anderson
,
D.
Srolovitz
,
G.
Grest
, and
P.
Sahni
,
Acta Metall.
32
,
615
(
1984
).
3.
E.
Ising
,
Zeitschrift Für Phys. A Hadron. Nucl.
31
,
253
(
1925
).
4.
B.C. J. W.
Martin
,
John Wilson
Martin
,
R. D.
Doherty
,
Stability of Microstructure in Metallic Systems
(
Cambridge University Press
,
UK
,
1997
).
5.
B.N. Koenraad George Frans
Janssens
,
Dierk
Raabe
,
Ernest
Kozeschnik
,
Mark A
Miodownik
,
Computational Materials Engineering: An Introduction to Microstructure Evolution
(
Elsevier Academic Press
,
USA
,
2010
).
6.
N.
Metropolis
,
A.W.
Rosenbluth
,
M.N.
Rosenbluth
,
A.H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
7.
R.B.
Potts
,
Math. Proc. Cambridge Philos. Soc.
48
,
106
(
1952
).
8.
D.
Srolovitz
,
M.
Anderson
,
P.
Sahni
, and
G.
Grest
,
Acta Metall.
32
,
793
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.