In this paper, we consider the two-dimensional linear Volterra fuzzy integral equation (2D-LVFIE). The homotopy analysis method (HAM) is used for determining the approximated solution of the investigated equation. We convert 2D-LVFIE to a system of linear Volterra integral equation in crisp case. Hence, we obtain an approximate solutions of this system and consequently obtain an approximation for the fuzzy solution of the linear Volterra fuzzy integral equation. We proof the convergence of the proposed method and error estimation between the exact and the approximate solution. A numerical example is given to demonstrate the validity and applicability of the proposed technique.

1.
Allahvirnaloo
T.
,
Abbasbandy
S.
:
The Adomian decompositon method applied to fuzzy system of Fredholm integral equations of the second kind
.
International Journal Uncertainty, Fuzziness Knowl-Based Systems
,
10
,
101
110
(
2006
)
2.
Alidema
A.
,
Georgieva
A.
:
Adomian decomposition method for solving two-dimensional nonlinear Volterra fuzzy integral equations
,
AIP Conference Proceedings
,
2048
,
050009
(
2018
)
3.
Abbasbandy
S.
,
Magyari
E.
,
Shivanian
E.
:
The homotopy analysis method for multiple solutions of nonlinear boundary value problems
.
Communications in Nonlinear Science and Numerical Simulation
,
14
,
3530
3536
(
2009
)
4.
Bataineh
A. S.
,
Noorani
M.S.M.
,
Hashim
I.
:
Approximate analytical solutions of systems of PDEs by homo-topy analysis method
.
Computers and Mathematics with Applications
,
55
,
2913
2923
(
2008
)
5.
Behzadi
S. S.
:
Solving Fuzzy Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Analysis and Adomian Decomposition Methods
.
International of Fuzzy Set Valued Analysis
,
35
,
13
pages (
2011
)
6.
Dubois
D.
,
Prade
H.
:
Towards fuzzy differential calculus. Part 2: integration of fuzzy intervals
.
Fuzzy Sets Syst.
,
8
,
105
116
(
1982
)
7.
Enkov
S.
,
Georgieva
A.
:
Numerical solution of two-dimensional nonlinear Hammerstein fuzzy functional integral equations based on fuzzy Haar wavelets
,
AIP Conference Proceedings
,
1910
,
050004-1
050004-8
, (
2017
).
8.
Enkov
S.
,
Georgieva
A.
,
Nikolla
R.
Numerical solution of nonlinear Hammerstein fuzzy functional integral equations
,
AIP Conference Proceedings
,
1789
,
030006-1
030006-8
, (
2016
).
9.
Georgieva
A.
:
Solving two-dimensional nonlinear Volterra-Fredholm fuzzy integral equations by using Adomian decomposition method
.
Dynamic Systems and Applications
,
27
,
819
837
, (
2018
)
10.
Ghanbari
M.
:
Numerical Solution of Fuzzy Linear Volterra Integral Equations of the Second Kind by Homo-topy Analysis Method
.
International Journal of Industrial Mathematics
,
2
,
73
87
(
2010
)
11.
Georgieva
A.
,
Alidema
A.
:
Convergence of homotopy perturbation method for solving of two-dimensional fuzzy Volterra functional integral equations
.
Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence
,
793
,
129
145
, (
2019
)
12.
Georgieva
A.
,
Naydenova
I.
:
Numerical Solution of Nonlinear Urisohn-Volterra Fuzzy Functional Integral Equations
.
AIP Conference Proceedings
,
1910
,
050010
(
2017
)
13.
Georgieva
A.
,
Pavlova
A.
,
Naydenova
I.
:
Error estimate in the iterative numerical method for two-dimensional nonlinear Hammerstein-Fredholm fuzzy functional integral equations
.
Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence
,
728
,
41
45
(
2018
)
14.
Goetschel
R.
,
Voxman
W.
:
Elementary fuzzy calculus
.
Fuzzy Sets and Systems
,
18
,
31
43
(
1986
)
15.
Gorder
R. V.
,
Vajravelu
K.
:
On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach
.
Communications in Nonlinear Science and Numerical Simulation
,
14
,
4078
4089
, (
2009
)
16.
Hussain
E.
,
Alkhalidy
A.
:
Homotopy analysis method for solving nonlinear fuzzy integral equations
.
International Journal Applied Math.
,
23
,
331
344
, (
2019
).
17.
Liao
S.
:
Homotopy Analysis Method in Nonlinear Differential Equations
.
Springer, Higher Education Press
,
Berlin Beijing
, (
2012
)
18.
Liao
S. J.
:
Notes on the homotopy analysis method: Some definitions and theorems
.
Communications in Nonlinear Science and Numerical Simulation
,
14
,
983
997
(
2009
)
19.
Liao
S. J.
:
On the homotopy analysis method for nonlinear problem
.
Applied Mathematics and Computation
,
147
,
499
513
(
2004
)
20.
Liao
S. J.
:
The proposed homotopy analysis technique for the solution of nonlinear problems
. Ph.D. Thesis,
Shanghai Jiao Tong University
, (
1992
)
21.
Odibat
Z.
:
A study on the convergence of homotopy analysis method
.
Applied Mathematics and Computation
,
217
,
782
789
, (
2010
)
22.
Russo
M.
,
Gorder
R. V.
:
Control of error in the homotopy analysis of nonlinear Klein-Gordon initial value problems
.
Applied Mathematics and Computation
,
219
,
6494
6509
(
2013
)
23.
Sadatrasoul
,
S.
,
Ezzati
,
R.
:
Quadrature rules and iterative method for numerical solution of two-dimensional fuzzy integral equations
.
Abstract and Applied Analysis
,
2114
,
18
pages (
2014
)
24.
Sadatrasoul
S.
,
Ezzati
,
R.
:
Numerical solution of two-dimensional nonlinear Hammerstein fuzzy integral equations based on optimal fuzzy quadrature formula
,
Journal of Computational and Applied Mathematics
292
,
430
446
(
2016
)
25.
Vali
M. A.
,
Agheli
M.J.
,
Nezhad
S. G
:
Homotopy Analysis Method to Solve Two-Dimensional Fuzzy Fred-holm Integral Equation
.
General Mathematics Notes
,
22
,
31
43
(
2014
)
26.
Wu
C.
,
Gong
Z.
:
On Henstock integral of fuzzy-number-valued functions (1
).
Fuzzy Sets and Systems
,
120
,
523
532
(
2001
)
This content is only available via PDF.
You do not currently have access to this content.