Concurrent palm oil mill effluent (POME) treatment and the electricity production was magnificently established by the as-fabricated photocatalytic fuel cell (PFC). The photoelectrodes were analyzed for its physical and chemical properties. The ZnO/Zn photoanode was observed to be uniform nanorods with size of 1000–1200 nm. The CuO/Cu photocathode was uniform nanoflakes in the length of 2143–2857 nm and the breadth of 286–571 nm. The EDX study revealed the respective elements on the photoelectrodes. As-established PFC was used to examine the COD and colour removal of POME, and its electricity generation under 240 minutes of UV illumination. The outcomes suggested that the as-prepared ZnO/Zn photoanode displayed higher COD (71 %) and colour (58 %) removal as compared with commercial ZnO/Zn photoanode. The system exhibited a greater short circuit current density and maximum power density of 0.0797 mA/cm2 and 0.0121 mW/cm2. The presence of 0.2 M sodium chloride as supporting electrolyte completely removed the COD and colour from the PFC system with the peak current density and maximum power density of 0.2113 mA/cm2 and 0.0337 mW/cm2 in the POME. PFC is a promising technology that can be used for efficient photocatalytic degradation and electricity production.

1.
C. K.
Cheng
,
M. R.
Derahman
, and
M.R.
Khan
,
Journal of Environmental Chemical Engineering
3
, pp.
261
270
(
2015
).
2.
K. H.
Ng
and
C. K.
Cheng
,
RSC Advances
5
, pp.
53100
53110
(
2015
).
3.
K.H.
Ng
,
W. Y.
Cheng
,
M. R.
Khan
and
C. K.
Cheng
,
Journal of Environmental Management
184
, pp.
487
493
(
2016
).
4.
Y.
Yang
,
W.
Liao
,
Y.
Liu
,
M.
Murugananthan
and
Y.
Zhang
,
Electrochimica Acta
144
, pp.
7
15
(
2014
).
5.
M.
Sui
,
Y.
Dong
,
Z.
Wang
,
F.
Wang
,
H.
You
,
Journal of Photochemistry and Photobiology A: Chemistry
348
, pp.
238
245
(
2017
).
6.
S. L.
Lee
,
L. N.
Ho
,
S. A.
Ong
,
Y. S.
Wong
,
C. H.
Voon
,
W. F.
Khalik
,
N. A.
Yusoff
and
N.
Nordin
,
Chemosphere
194
, pp.
675
681
(
2018
).
7.
APHA
,
American Public Health Association, Standard Methods for the Examination of Water and Wastewater
, 21st ed.
Washington, D.C., USA
(
2005
).
8.
Hach
,
Water Analysis Handbook
, 10th ed.
US Hach Company
,
USA
(
2014
).
9.
H.S.
Choo
,
S. M.
Lam
,
J. C.
Sin
,
A. R.
Mohamed
,
Desalination and Water Treatment
57
, pp.
14227
14240
(
2016
).
10.
T. A.
,
Kusumam
,
T.
Panakkal
,
T.
Divya
,
M. P.
Nikhila
,
M.
Anju
,
K.
Anas
and
N. K.
Renuka
,
Ceramics International
42
, pp.
3769
3775
(
2016
).
11.
S. H.
Kim
,
A.
Umar
and
S. W.
Hwang
,
Ceramics International
41
, pp.
9468
9475
(
2015
).
12.
S. H.
Kim
,
A.
Umar
,
R.
Kumar
,
A. A.
Ibrahim
and
G.
Kumar
,
Material Letters
156
, pp.
138
141
(
2015
).
13.
K.
Zhao
,
Q.
Zeng
,
J.
Bai
,
J.
Li
,
L.
Xia
,
S.
Chen
and
B.
Zhou
,
Water Research
108
, pp.
293
300
(
2017
).
14.
L.
Osiewala
,
A.
Socha
,
A.
Perek
,
M.
Socha
and
J.
Rynkowski
,
Water, Air and Soil Pollution
224
, pp.
1657
1670
(
2013
).
15.
C.
Wang
,
Q.
Zhu
,
C.
Gu
,
X.
Luo
,
C.
Yu
and
M.
Wu
,
RSC Advances
6
, pp.
85852
85859
(
2016
).
16.
M.W.
Kee
,
J.W.
Soo
,
S.M.
Lam
,
J.C.
Sin
,
A.R.
Mohamed
,
Journal of Environmental Management
228
, pp.
383
392
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.