In the present communication, parametric exponential fuzzy information measure is introduced and defined in axiomatic way of entropy. Anshu Ohlan [1] defined entropy on fuzzy set and we generalize this entropy on intuitionistic fuzzy set. To verify that our proposed measure is valid entropy, we have analyzed some properties of this measure.
Topics
Entropy
REFERENCES
1.
A.
Ohlan
, Generalized Exponential fuzzy information measures
. ICRTESM
(2016
).2.
L. A.
Zadeh
, Fuzzy Sets. Information and Control
, vol. 8
, pp. 338
–353
, 1965
.3.
L. A.
Zadeh
, Probability measure of fuzzy events
, Journal of Mathematical Analysis and Application
, vol. 23
, 421
–427
(1968
).4.
Shannon
E.
A Mathematical Theory of Communication
. The Bell System Technical Journal
, vol. 27
, 379
–423
(1948
).5.
De Luca
A.
and Termini
S.
A definition of a Non-probabilistic Entropy in Setting of Fuzzy Sets
. Information and Control
, vol. 20
, 301
–312
(1972
).6.
Bhandari
D.
and Pal
N. R.
Some new information measure for fuzzy set
. Information Science
, vol. 67
, 209
–228
(1993
).7.
Pal
N. R.
and Pal
S. K.
Entropy: A new definition and its application of entropy
. IEEE Transaction on system Man and Cybernetics
, vol. 21
, 1260
–1270
(1999
).8.
Pal
N. R.
and Pal
S. K.
Object background segmentation using new definitions of entropy
. IEEE Proc.
, vol. 366
, 284
–295
(1989
).9.
Hooda
D. S.
On generalized measure of fuzzy entropy
. Mathematica Slovaca
, vol. 54
, 315
–325
(2004
).10.
Garg
H.
Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making
. International Journal of Machine Learning and Cybernetics
, vol. 7
, 1075
–1092
(2016
).11.
Yager
R. R.
On the measure of the fuzziness and negative, Part I: Membership in unit interval
. International Journal of General Systems
, vol. 5
, 221
–229
(1979
).12.
Fan
J. L.
and Ma
Y. L.
Some new fuzzy entropy formulas
. Fuzzy Set and Systems
, vol. 128
, 277
–284
(2002
).13.
Atanassov
K. T.
Intuitionistic fuzzy sets
. Fuzzy Sets and Systems
, vol. 20
(1
), 87
–96
(1986
).14.
Burillo
P.
and Bustince
H.
Entropy on intuitionistic fuzzy sets and interval-valued fuzzy set
. Fuzzy Set Systems
, vol. 78
, 305
–316
(1996
).15.
Szmidt
E.
and Kacprzyk
J.
Entropy for Intuitionistic Fuzzy Sets
. Fuzzy Sets and Systems
, vol. 118
, 467
–477
(2001
).16.
Szmidt
E.
and Kacprzyk
J.
A New Measure of Entropy and Its Connection with a Similarity Measure for Intuitionistic Fuzzy Set
. EUSFLATLFA
, 461
–466
(2005
).17.
De
S. K.
, Biswas
R.
and Roy
A. R.
An application of intuitionistic fuzzy sets in medical diagnosis
. Fuzzy Sets and Systems
, vol. 117
, 209
–213
(2001
).18.
Hung
W. L.
and Yang
M. S.
Fuzzy Entropy on Intuitionistic Fuzzy Sets
. International Journal of Intelligent Systems
, vol. 21
, 443
–451
(2006
).19.
Vlachos
I. K.
and Sergiadis
G. D.
Intuitionistic fuzzy information-Applications to pattern recognition
. Pattern Recognition Letters
, vol. 28
, 197
–206
(2007
)20.
Chaira
T.
and Ray
A. K.
A new measure using intuitionistic fuzzy set theory and its application to edge detection
. Journal of Applied Soft Computing
, vol. 8
(2
), 919
–927
(2008
).21.
Ye
J.
Two Effective Measures of Intuitionistic Fuzzy Entropy
. Computing
, vol. 87
, 55
–62
(2010
).22.
Verma
R.
and Sharma
B. D.
Exponential Entropy on Intuitionistic Fuzzy Sets
. Kybernetika
, vol. 49
(1), 114
–127
(2013
).23.
Zhang
Q. S.
and Jiang
S. Y.
A note on Information Entropy Measure for Vague Sets
. Inform. Sci.
vol. 21
, 4184
–4191
(2008
).24.
Li
F.
, Lu
Z. H.
and Cai
L. J.
The entropy of vague sets based on fuzzy set
. J. Huazhong Univ. Science and Technology
, vol. 31
, 24
–25
(2003
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.