In the present communication, parametric exponential fuzzy information measure is introduced and defined in axiomatic way of entropy. Anshu Ohlan [1] defined entropy on fuzzy set and we generalize this entropy on intuitionistic fuzzy set. To verify that our proposed measure is valid entropy, we have analyzed some properties of this measure.

1.
A.
Ohlan
,
Generalized Exponential fuzzy information measures
.
ICRTESM
(
2016
).
2.
L. A.
Zadeh
,
Fuzzy Sets. Information and Control
, vol.
8
, pp.
338
353
,
1965
.
3.
L. A.
Zadeh
,
Probability measure of fuzzy events
,
Journal of Mathematical Analysis and Application
, vol.
23
,
421
427
(
1968
).
4.
Shannon
E.
A Mathematical Theory of Communication
.
The Bell System Technical Journal
, vol.
27
,
379
423
(
1948
).
5.
De Luca
A.
and
Termini
S.
A definition of a Non-probabilistic Entropy in Setting of Fuzzy Sets
.
Information and Control
, vol.
20
,
301
312
(
1972
).
6.
Bhandari
D.
and
Pal
N. R.
Some new information measure for fuzzy set
.
Information Science
, vol.
67
,
209
228
(
1993
).
7.
Pal
N. R.
and
Pal
S. K.
Entropy: A new definition and its application of entropy
.
IEEE Transaction on system Man and Cybernetics
, vol.
21
,
1260
1270
(
1999
).
8.
Pal
N. R.
and
Pal
S. K.
Object background segmentation using new definitions of entropy
.
IEEE Proc.
, vol.
366
,
284
295
(
1989
).
9.
Hooda
D. S.
On generalized measure of fuzzy entropy
.
Mathematica Slovaca
, vol.
54
,
315
325
(
2004
).
10.
Garg
H.
Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making
.
International Journal of Machine Learning and Cybernetics
, vol.
7
,
1075
1092
(
2016
).
11.
Yager
R. R.
On the measure of the fuzziness and negative, Part I: Membership in unit interval
.
International Journal of General Systems
, vol.
5
,
221
229
(
1979
).
12.
Fan
J. L.
and
Ma
Y. L.
Some new fuzzy entropy formulas
.
Fuzzy Set and Systems
, vol.
128
,
277
284
(
2002
).
13.
Atanassov
K. T.
Intuitionistic fuzzy sets
.
Fuzzy Sets and Systems
, vol.
20
(
1
),
87
96
(
1986
).
14.
Burillo
P.
and
Bustince
H.
Entropy on intuitionistic fuzzy sets and interval-valued fuzzy set
.
Fuzzy Set Systems
, vol.
78
,
305
316
(
1996
).
15.
Szmidt
E.
and
Kacprzyk
J.
Entropy for Intuitionistic Fuzzy Sets
.
Fuzzy Sets and Systems
, vol.
118
,
467
477
(
2001
).
16.
Szmidt
E.
and
Kacprzyk
J.
A New Measure of Entropy and Its Connection with a Similarity Measure for Intuitionistic Fuzzy Set
.
EUSFLATLFA
,
461
466
(
2005
).
17.
De
S. K.
,
Biswas
R.
and
Roy
A. R.
An application of intuitionistic fuzzy sets in medical diagnosis
.
Fuzzy Sets and Systems
, vol.
117
,
209
213
(
2001
).
18.
Hung
W. L.
and
Yang
M. S.
Fuzzy Entropy on Intuitionistic Fuzzy Sets
.
International Journal of Intelligent Systems
, vol.
21
,
443
451
(
2006
).
19.
Vlachos
I. K.
and
Sergiadis
G. D.
Intuitionistic fuzzy information-Applications to pattern recognition
.
Pattern Recognition Letters
, vol.
28
,
197
206
(
2007
)
20.
Chaira
T.
and
Ray
A. K.
A new measure using intuitionistic fuzzy set theory and its application to edge detection
.
Journal of Applied Soft Computing
, vol.
8
(
2
),
919
927
(
2008
).
21.
Ye
J.
Two Effective Measures of Intuitionistic Fuzzy Entropy
.
Computing
, vol.
87
,
55
62
(
2010
).
22.
Verma
R.
and
Sharma
B. D.
Exponential Entropy on Intuitionistic Fuzzy Sets
.
Kybernetika
, vol.
49
(
1), 114
127
(
2013
).
23.
Zhang
Q. S.
and
Jiang
S. Y.
A note on Information Entropy Measure for Vague Sets
.
Inform. Sci.
vol.
21
,
4184
4191
(
2008
).
24.
Li
F.
,
Lu
Z. H.
and
Cai
L. J.
The entropy of vague sets based on fuzzy set
.
J. Huazhong Univ. Science and Technology
, vol.
31
,
24
25
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.