(CoFe2O4)x(BaFe12O19)1-x (x= 0.0, 0.4, 0.6, 0.8, 1.0) nano-composites was synthesized via single reaction mixture, utilizing sol-gel auto combustion method, with an intention to have superior structural homogeneity, and eventually to have single magnetic phase with enhanced exchange coupling between CoFe2O4 (soft) − BaFe12O19 (hard) phase. As-synthesized composite was thermally treated at 800 °C/4hrs, needed for the formation of hexagonal phase. X-ray diffraction (XRD) displays presence of both soft and hard phases only. Grain size for BaFe12O19 and CoFe2O4 respectively range between 50.2 − 54.5 nm and 45.5 − 56.5 nm. Obtained value of saturation magnetization (Ms), coercivity (Hc) for the studied samples is respectively: 39.8 Am2/kg − 75.5 Am2/kg and 501.2 Oe − 2587.9 Oe. Observed Ms, Hc values clearly show that single reaction mixture leads to better exchange coupling between soft-hard phases. Ms enhancement was also observed with increasing substitution amount (x). Observed results point out (CoFe2O4)x(BaFe12O19)1-x composite system as a good candidate for their potential applications as hard magnets.

1.
M. H.
Kryder
,
MRS Bull.
21
,
17
19
(
1996
).
2.
A.
Manaf
,
R. A.
Buckley
and
H. A.
Davies
,
J. Magn. Magn. Mater.
128
,
302
306
(
1993
).
3.
L.
Withwanawasam
,
G. C.
Hadjipanayis
and
R.F.
Krause
,
J. Appl. Phys.
75
,
6646
6648
(
1994
).
4.
Y.
Zhu
,
L. P.
Stubbs
and
F.
Ho
,
Chem. Cat. Chem.
2
,
365
374
(
2010
).
5.
K. P.
Remya
,
D.
Prabhu
,
S.
Amirthapandian
,
C.
Viswanathan
and
N.
Ponpandian
,
J. Magn. Magn. Mater.
406
,
233
238
(
2016
).
6.
N.
Yang
,
H. B.
Yang
,
J. J.
Jia
and
X. F.
Pang
,
J. Alloys Comp.
438
,
263
267
(
2007
).
7.
S.
Diaz-Castanon
,
J. L.
Sanchez
,
L. I.
Estevez-Rams
,
F.
Leccabue
and
B. E.
Watts
,
J. Magn. Magn. Mater.
185
,
194
198
(
1998
).
8.
Y.
Wang
,
D.
Su
,
A.
Ung
,
J. H.
Ahn
,
G.
Wang
,
Nanotechnology
23
,
305501
7
(
2012
).
9.
A.
Lopez-Ortega
,
M.
Estrader
,
G. A.
Alvarez
,
A. G.
Roca
,
J. Nogues, Phys Rep.
553
,
1
32
(
2015
).
10.
R.
Rakshit
,
M.
Mandal
,
M.
Pal
,
K.
Mandal
,
Appl. Phys. Lett.
104
,
092412
0912417
(
2014
).
11.
D.
Mazuera
,
O.
Perales
,
M.
Suarez
,
S.
Singh
,
Mater. Sci. Eng. A
527
,
6393
9
(
2010
).
12.
Q.
Zeng
,
Y.
Zhang
,
M. J.
Bonder
, and
G. C.
Hadjipanayis
,
J. Appl. Phys.
93
,
6498
6500
(
2003
).
13.
J. H.
Hong
,
W. S.
Kim
,
J. I.
Lee
, and N. H.
Jur, Solid. State Commun.
141
,
541
(
2007
).
14.
J.
Ding
,
P. G.
McCormick
, and
R.
Street
,
J. Magn. Magn. Mater.
124
,
1
4
(
1993
).
15.
J. M.
Le Breton
,
R.
Larde
,
H.
Chiron
,
V.
Pop
,
D.
Givord
,
O.
Isnard
, and
I.
Chicinas
,
J. Phys. D: Appl. Phys.
43
,
085001
(
2010
).
16.
D.
Neupane
,
M.
Ghimire
,
H.
Adhikari
,
A.
Lisfi
, and
S. R.
Mishra
,
AIP Advances
7
,
055602
1
–11 (
2017
).
17.
L.
Pan
,
D.
Cao
,
P.
Jing
,
J.
Wang
and
Q.
Liu
,
Nanoscale Res. Lett.
10
:
131
,
1
7
(
2015
)
18.
G. B.
Han
,
R. W.
Gao
,
S.
Fu
,
W. C.
Feng
,
H. Q.
Liu
,
W.
Chen
,
W.
Li
,
Y. Q.
Guo
,
Appl Phys A
81
,
579
582
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.