The frequency-dependent dielectric relaxation of ferroelectric BiFeO3-0.30Sr(Fe0.5Nb0.5)O3 (BF-0.30SFN) ceramic, synthesized by solid-state reaction route is studied in the temperature range from 2 K to 300 K by ac-impedance spectroscopy. The x-ray diffraction profile of the powder sample of 0.70BF-0.30SFN at room temperature exhibits coexistence of two phases. The first phase is monoclinic in Cc space group and the second is cubic in Pm-3m space group. The ionic polarization calculated from structural data is found to be ∼29.297 µC/cm2. The activation energy calculated from the frequency dependence of imaginary part of electric modulus spectra is found to be 0.415eV, which suggests that the bulk conduction in BF-0.30SFN is due to polaron hopping based on the electron carriers. The scaling behavior of the imaginary part of the electric modulus (M′′) suggests that the relaxation describes the same mechanism at various temperatures. The SEM microstructure of this ceramic show the grain size lies in the range 3 µm to 10 µm and EDS spectra reveals the good chemical homogeneity of the ceramic sample.

1.
T.
Kimura
, et al. 
Nature
426
,
55
58
(
2003
).
2.
T.
Goto
,
T.
Kimura
,
G.
Lawes
,
A. P.
Ramirez
,
Y.
Tokura
,
Phys. Rev. Lett.
92
,
257201
(
2004
).
3.
N.
Hur
,
S.
Park
,
P. A.
Sharma
,
J. S.
Ahn
,
S.
Guha
&
S-W.
Cheong
,
Nature
429
,
392
395
(
2004
).
4.
T.
Lottermoser
,
T.
Lonkai
,
U.
Amann
,
D.
Hohlwein
,
J.
Ihringer
&
M.
Fiebig
,
Nature
430
,
541
544
(
2004
).
5.
A. M.
Glazer
,
Acta cryst. B
28
,
3384
(
1972
).
6.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
, and
M.
Viret
,
Appl. Phys. Lett.
91
,
022907
(
2007
).
7.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spaldin
,
K. M.
Rabe
,
M.
Wuttig
, and
R.
Ramesh
,
Science
299
,
1719
(
2003
).
8.
D.
Lebeugle
 et al.,
Phys. Rev. B
76
,
024116
(
2007
).
9.
J. B.
Neaton
,
C.
Ederer
,
U. V.
Waghmare
,
N. A.
Spaldin
, and
K. M.
Rabe
,
Phys. Rev. B
71
,
014113
, (
2005
).
10.
P.
Ravindran
,
R.
Vidya
,
A.
Kjekshus
and
H.
Fjellvag
,
Phys. Rev. B
74
,
224412
(
2006
).
11.
N.
Wang
,
J.
Cheng
,
A.
Pyatakov
,
A. K.
Zvezdin
,
J. F.
Li
,
L. E.
Cross
and
D.
Viehland
,
Phys. Rev. B
72
,
104434
(
2005
).
12.
H.
Schmid
,
Ferroelectrics
162
,
665
685
, (
1994
).
13.
M.
Fiebig
,
J. Phys. D: appl. Phys.
38
,
R123
R152
(
2005
).
14.
A.
singh
,
V.
Pandey
,
R. K.
Kotnala
and
D.
Pandey
Phys. Rev. Lett.
101
,
247602
(
2008
).
15.
Z. Z.
Ma
,
Z. M.
Tian
,
J. Q.
Li
,
C. H.
Wang
,
S. X.
Huo
,
H. N.
Duan
,
S. L.
Yuan
,
Solid State Sciences
13
,
2196
2200
(
2011
).
16.
J. P.
Patel
,
A.
Senyshyn
,
H.
Fuess
and
D.
Pandey
,
Phys. Rev. B
88
,
104108
(
2013
).
17.
A.
Singh
,
A.
Senyshyn
,
H.
Fuess
,
S. J.
Kennedy
and
D.
Pandey
,
Phys. Rev. B
89
,
024108
(
2014
).
18.
H.
Amorín
,
C.
Correas
,
P.
Ramos
,
T.
Hungría
,
A.
Castro
, and
M.
Algueró
,
Appl. Phys. Lett.
101
,
172908
(
2012
).
19.
A.
singh
,
A.
Senyshyn
,
H.
Fuess
,
T.
Chatterji
,
D.
Pandey
,
Phys. Rev. B
83
,
054406
(
2011
).
20.
J. P.
Patel
,
Anar
Singh
,
D.
Pandey
,
J. Appl. Phys.
107
,
104115
(
2010
).
21.
J. R.
Carvajal
,
Laboratoire Leon Brillouin, Saclay, Fullprof version 1.8a
, December (
2008
).
22.
R.
Ranjan
 et al.,
Phys. Rev. B
71
,
092101
(
2005
).
23.
P.
Fischer
 et al.,
J. Phys. C: Solid State Phys.
,
13
1931
40
(
1980
).
24.
I.
Sosvowska
 et al.,
Appl. Phys. A
74 [
Suppl.]
,
S1040
S1042
(
2002
) (DOI) .
25.
A.
Palewicz
 et al.,
Acta Cryst. B
,
63
,
537
544
(
2007
).
26.
Y.
Wei
,
X.
Wang
,
J.
Jia
, and
X.
Wang
,
Ceramic International
,
38
,
3499
(
2012
).
27.
S.
Saha
and
T. P.
Sinha
,
Phys. Rev. B
,
65
,
134103
(
2002
).
28.
A.
Dutta
and
T. P.
Sinha
,
Phys. Rev. B
76
,
155113
(
2007
).
29.
G.
Catalan
and
J. F.
Scott
,
Adv. Mater.
,
21
,
2463
2485
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.