The construction of multiple partitions in consensus clustering with random initialization and various parameters values of clustering algorithm enable us to measure the stability of objects (points) in a cluster. The procedure to indicate stability is aided by the co-occurrences of pair objects (i,j) allocated to the same cluster in each partition. In this paper, we propose a voting-merged method - a combination of voting-based method and merging process. Our experiment with simulations and real datasets shows better performance for well-separated clusters and low degree of overlapping.

1.
A.
Topchy
,
A. K.
Jain
, and
W.
Punch
,
IEEE Transactions on Pattern Analysis and Machine Intelligence
27
(
12
),
1866
1881
(
2005
).
2.
A.
Ben-Hur
,
A.
Elisseeff
, and
I.
Guyon
,
Biocomputing
,
6
17
(
2002
).
3.
U.
von Luxburg
,
Foundations and Trends in Machine Learning
2
(
3
),
235
274
(
2010
).
4.
A.
Lancichinetti
and
S.
Fortunato
,
Sci Rep
2
,
336
(
2012
).
5.
Y.
Şenbabaoğlu
,
G.
Michailidis
, and
J. Z.
Li
,
Sci Rep
4
,
6207
(
2014
).
6.
S.
Ben-David
,
U.
von Luxburg
and
D.
Pál
,
Learning Theory
,
5
19
(
2006
).
7.
L. I.
Kuncheva
and
D. P.
Vetrov
,
IEEETransactionson Pattern Analysisand Machine Intelligence
28
(
11
),
1798
1808
(
2006
).
8.
E.
Lord
,
M.
Willems
,
F. J.
Lapointe
, and
V.
Makarenkov
,
Information Sciences
393
,
29
46
(
2017
).
9.
D.
Dua
and
C.
Graff
,
UCI Machine Learning Repository
, http://archive.ics.uci.edu/ml (
2017
).
10.
P. J.
Rousseeuw
,
Journal of Computational and Applied Mathematics
20
,
53
65
(
1987
).
11.
J. C.
Bezdek
and
N. R.
Pal
,
IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics
28
(
3
),
301
315
(
1998
).
12.
V.
Melnykov
,
W. C.
Chen
, and
R.
Maitra
,
Journal of Statistical Software
51
(
12
),
1
25
(
2012
).
13.
L.
Kaufman
and
P.
Rousseeuw
, “Partitioning Around Medoids (Program PAM)” in
Finding Groups in Data: An Introduction To Cluster Analysis
, (
Wiley
,
New Jersey
,
1990
), pp.
68
119
.
14.
M.
Ackerman
,
S.
Ben-David
,
S.
Brânzei
and
D.
Loker
, “
Weighted Clustering
”,
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
(
2011
), pp.
858
863
.
15.
Y.
Yang
, “
Temporal Data Clustering via a Weighted Clustering Ensemble With Different Representations
”, in
Temporal Data Mining Via Unsupervised Ensemble Learning
, (
Elsevier Science
,
Amsterdam
,
2017
), pp.
93
122
.
16.
V.
Berikov
and
I.
Pestunov
,
Pattern Recognition
63
,
427
436
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.