Error magnitude is a measurement commonly used in forecast evaluation. However, the purpose of forecasting air quality is to maintain the air quality within assigned guidelines. Thus, the index measurement is important to be considered. But, the problem arises when the index is used to gauge the values of different offices and these measurements are found to be degenerate in commonly occurring situations. Therefore, this study aims to overcome both of the limitations. The daily air pollutant index (API) data from year 2005 to 2011 was used to compare the forecast performance between Box-Jenkins methods, artificial neural networks (ANN) and hybrid method. The forecast accuracy measurements used include mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute deviation (MAD), true predicted rate (TPR), false positive rate (FPR), false alarm rate (FAR) and successful index (SI) including the proposed index measurement, combination index (CI). It is found that the index measurement enhance the ability to measure the air quality forecast performance in choosing the best forecast method with CI significantly overcome the limitation of existing index measurement. Thus, this study suggests to use the appropriate measurement in accordance to the purpose of forecasting.

1.
R. J.
Hyndman
and
A. B.
Koehler
,
International Journal of Forecasting
22
,
679
688
(
2006
).
2.
J.
McKenzie
,
Economics Letters
113
,
259
262
(
2011
).
3.
J.
Armstrong
and
F.
Collopy
,
International Journal of Forecasting
8
,
69
80
(
1992
).
4.
U.
Schlink
,
S.
Dorling
,
E.
Pelikan
,
G.
Nunnari
,
G.
Cawley
,
H.
Junninen
,
A.
Greig
,
R.
Foxall
,
K.
Eben
,
T.
Chatterton
,
J.
Vondracek
,
M.
Richter
,
M.
Dostal
,
L.
Bertucco
,
M.
Kolehmainen
, and
M.
Doyle
,
Atmo-spheric Environment
37
,
3237
3253
(
2003
).
5.
A.-L.
Dutot
,
J.
Rynkiewicz
,
F. E.
Steiner
, and
J.
Rude
,
Environmental Modelling & Software
22
,
1261
1269
(
2007
).
6.
H. do Nascimento
Camelo
,
P. S.
Lucio
,
J. B. V. L.
Junior
,
P. C. M.
de Carvalho
, and
D. von Glehn dos
Santos
,
Energy
151
,
347
357
(
2018
).
7.
J.-S.
Heo
and
D.-S.
Kim
,
Science of The Total Environment
325
,
221
237
(
2004
).
8.
U.
Kumar
and
V. K.
Jain
,
Stochastic Environmental Research and Risk Assessment
24
,
751
760
(
2010
).
9.
G.
Zhang
,
Neurocomputing
50
,
159
175
(
2003
).
10.
S.
Suhartono
,
Journal of Mathematics and Statistics
,
7
,
20
2701
(
2011
).
11.
X.-K.
Wang
and
L.
Wei-Zhen
,
Chemosphere
,
63
,
1261
7206
(
2006
).
12.
M. Z.
Ibrahim
,
R.
Zailan
,
M.
Ismail
, and
M. S.
Lola
,
American Journal of Environmental Sciences
5
,
625
632
(
2009
).
13.
A.
Kurt
and
A. B.
Oktay
,
Expert Systems with Applications
37
,
7986
7992
(
2010
).
14.
M.
Gardner
and
S.
Dorling
,
Atmospheric Environment
32
,
2627
2636
(
1998
).
15.
U.
Brunelli
,
V.
Piazza
,
L.
Pignato
,
F.
Sorbello
, and
S.
Vitabile
,
Atmospheric Environment
41
,
2967
2995
(
2007
).
16.
J.
Wang
,
H.
Li
, and
H.
Lu
,
Applied Soft Computing
71
,
783
799
(
2018
).
17.
J. M.
Bates
and
C. W. J.
Granger
(
Cambridge University Press
,
New York, NY, USA
,
2001
) Chap. The Combination of Forecasts,, pp.
391
410
.
18.
S.
Shen
,
G.
Li
, and
H.
Song
,
Annals of Tourism Research
38
,
72
89
(
2011
).
19.
A. B.
Chelani
and
S.
Devotta
,
Atmospheric Environment
40
,
1774
1780
(
2006
).
20.
A.
Kumar
and
P.
Goyal
,
Science of The Total Environment
409
,
5517
5523
(
2011
).
21.
D. of Environment
, “
Malaysia environmental quality report
,” (
2011
).
22.
N.
Sansuddin
,
N. A.
Ramli
,
A. S.
Yahaya
,
N. F. F. M.
Yusof
,
N. A.
Ghazali
, and
W. A. A.
Madhoun
,
Environmental Monitoring and Assessment
180
,
573
588
(
2011
).
23.
R.
Afroz
,
M. N.
Hassan
, and
N. A.
Ibrahim
,
Environmental Research
92
,
71
77
(
2003
).
24.
A.
Rizzo
and
J.
Glasson
,
Cities
29
,
417
427
(
2012
).
25.
F.-M.
Tseng
,
H.-C.
Yu
, and
G.-H.
Tzeng
,
Technological Forecasting and Social Change
69
,
71
87
(
2002
).
26.
T.
Taskaya-Temizel
and
M. C.
Casey
,
Neural Networks
18
,
781
789
(
2005
).
27.
K. P.
Moustris
,
I. C.
Ziomas
, and
A. G.
Paliatsos
,
Water, Air, & Soil Pollution
209
,
29
43
(
2010
).
28.
M.
Khashei
and
M.
Bijari
,
Expert Systems with Applications
37
,
479
489
(
2010
).
29.
W. S.
Sarle
, “
Neural networks and statistical models
,” in
Proceedings of the Nineteenth Annual SAS Users Group International Conference
, Vol.
1994
(
SAS Institute Inc.
,
1994
), pp.
1
13
.
30.
G.
Zhang
,
B. E.
Patuwo
, and
M. Y.
Hu
,
International Journal of Forecasting
14
,
35
62
(
1998
).
31.
G.
Elliott
,
A.
Timmermann
, and
I.
Komunjer
,
Review of Economic Studies
72
,
1107
1125
(
2005
).
32.
R.
van Aalst
and
F.
de Leeuw
, “National ozone forecasting systems and international data exchange in north-west europe,”
Tech. Rep
. (
European Environment Agency
,
1997
).
33.
F.
Julian
and
C.
Chris
,
Journal of the Royal Statistical Society: Series C (Applied Statistics)
47
,
231
250
, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9876.00109.
34.
G.
Zhang
and
M.
Qi
,
European Journal of Operational Research
160
,
501
514
(
2005
), decision Support Systems in the Internet Age.
35.
W. H.
Organization
, “Who air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment,”
Tech. Rep
. (
World Health Organization
,
2006
).
This content is only available via PDF.
You do not currently have access to this content.