One of most important techniques that plays a key role in elevating a mobile robot’s independence is its ability to construct a map from an unknown surrounding in an unknown initial position, and with the use of onboard sensors, localize itself in this map. This technique is called simultaneous localization and mapping or SLAM. Over the last 30 years, numerous new and interesting inquiries have been raised, with the improvement of new techniques, new computational instruments, and new sensors. However, the big challenges facing mobile robots in the next decade, as in the autonomous urban vehicles, require extended representations that exceed traditional mapping found in classical SLAM systems, i.e. the so-called semantic representation. The main goal of a SLAM system with semantic concepts is to expand mobile robots’ services and strengthen human-robot interaction. Related works reviewed show that the visual-based SLAM or VSLAM has received a great deal of interest in the last decade. This is due to the visual sensors’ capability to provide information of the scene whereas they are low-priced, smaller and lighter than other sensors. Unlike the metric representation, semantic mapping is still immature, and it comes up short on durable formulation. This paper aims to systematically review recent researches related to the semantic VSLAM, including its types, approaches, and challenges. The paper also deals with the classical SLAM system by giving an overview of necessary information before getting into detail. This review also provides new researches in the SLAM domain facilities to further understand the anatomy of modern VSLAM generation, discover recent algorithms, and apprehend some open challenges.

1.
C.
Cadena
,
L.
Carlone
,
H.
Carrillo
,
Y.
Latif
,
D.
Scaramuzza
,
J.
Neira
,
I.
Reid
, and
J.J.
Leonard
,
IEEE Trans. Robot.
32
,
1309
(
2016
).
2.
A.
Bachrach
,
S.
Prentice
,
R.
He
,
P.
Henr
Y.,
A.S.
Huang
,
M.
Kraini
N.,
D.
Maturana
,
D.
Fox
, and
N.
Roy
,
Int. J. Rob. Res.
31
,
1320
(
2012
).
3.
C.
Stachniss
,
J.J.
Leonard
, and
S.
Thrun
, in
Springer Handb. Robot
. (
Springer International Publishing
,
Cham
,
2016
), pp.
1153
1176
.
4.
A.
Concha
and
J.
Civera
,
IEEE Int. Conf. Intell. Robot. Syst.
2017–Septe,
6756
(
2017
).
5.
Q.
Liu
,
R.
Li
,
H.
Hu
, and
D.
Gu
,
Robotics
5
,
8
(
2016
).
6.
Q.
Liu
,
R.
Li
,
H.
Hu
, and
D.
Gu
,
2016
8th Comput. Sci. Electron. Eng. Conf. CEEC 2016 - Conf. Proc.
12
(
2017
).
7.
B.
Lin
,
Visual SLAM and Surface Reconstruction for Abdominal Minimally Invasive Surgery
,
2015
.
8.
J.
Fuentes-Pacheco
,
J.
Ruiz-Ascencio
, and
J.M.
Rendón-Mancha
,
Artif. Intell. Rev.
43
,
55
(
2012
).
9.
M.O.A.
Aqel
,
M.H.
Marhaban
,
M.I.
Saripan
, and
N.B.
Ismail
,
Springerplus
5
, (
2016
).
10.
Y.
Xiang
and
D.
Fox
, (
2017
).
11.
S.L.
Bowman
,
N.
Atanasov
,
K.
Daniilidis
, and
G.J.
Pappas
, in
2017 IEEE Int. Conf. Robot. Autom
. (
IEEE
,
2017
), pp.
1722
1729
.
12.
I.
Kostavelis
and
A.
Gasteratos
,
Rob. Auton. Syst.
66
,
86
(
2015
).
13.
J.R.
Ruiz-Sarmiento
,
C.
Galindo
, and
J.
Gonzalez-Jimenez
,
Knowledge-Based Syst.
119
,
257
(
2017
).
14.
H.
Durrant-Whyte
and
T.
Bailey
,
IEEE Robot. Autom. Mag.
13
,
99
(
2006
).
15.
T.
Bailey
and
H.
Durrant-Whyte
,
IEEE Robot. Autom. Mag.
13
,
108
(
2006
).
16.
D.
Scaramuzza
and
F.
Fraundorfer
,
IEEE Robot. Autom. Mag.
18
,
80
(
2011
).
17.
F.
Fraundorfer
and
D.
Scaramuzza
,
IEEE Robot. Autom. Mag.
19
,
78
(
2012
).
18.
C.
Stachniss
, “
SLAM Course - WS13/14 - YouTube
.” [Online]. Available: https://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_. [Accessed: 28-Apr- 2019].
19.
C.
Brenner
, “
SLAM Lectures - YouTube
.” [Online]. Available: https://www.youtube.com/playlist?list=PLpUPoM7Rgzi_7YWn14Va2FODh7LzADBSm. [Accessed: 28-Apr- 2019].
20.
S.
Huang
and
G.
Dissanayake
,
Int. J. Adv. Robot. Syst.
13
,
1
(
2016
).
21.
Chieh-Chih
Wang
,
C.
Thorpe
, and
S.
Thrun
, in
2003
IEEE Int. Conf. Robot. Autom. (Cat. No.03CH37422)
(
IEEE
,
2003
), pp.
842
849
.
22.
G.
Bresson
,
Z.
Alsayed
,
L.
Yu
, and
S.
Glaser
,
IEEE Trans. Intell. Veh.
2
,
194
(
2017
).
23.
T.
Taketomi
,
H.
Uchiyama
, and
S.
Ikeda
,
IPSJ Trans. Comput. Vis. Appl.
9
, (
2017
).
24.
R.
Mur-Artal
and
J.D.
Tardos
,
IEEE Trans. Robot.
33
,
1255
(
2017
).
25.
T.J.
Chong
,
X.J.
Tang
,
C.H.
Leng
,
M.
Yogeswaran
,
O.E.
Ng
, and
Y.Z.
Chong
,
Procedia Comput. Sci.
76
,
174
(
2015
).
26.
ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras - YouTube
,” May,
2018
. [Online]. Available: https://www.youtube.com/watch?v=IuBGKxgaxS0. [Accessed: 03-May-2019].
27.
J.
Engel
,
T.
Schöps
, and
D.
Cremers
, in
Inorganica Chim. Acta
(
2014
), pp.
834
849
.
28.
LSD-SLAM: Large-Scale Direct Monocular SLAM (ECCV ’14) - YouTube
,” Jul, 2014. [Online]. Available: https://www.youtube.com/watch?v=GnuQzP3gty4. [Accessed: 03-May-2019].
29.
T.
Laidlow
,
M.
Bloesch
,
W.
Li
, and
S.
Leutenegger
, in
2017
IEEE/RSJ Int. Conf. Intell. Robot. Syst
. (
IEEE
,
2017
), pp.
6741
6748
.
30.
Dense RGB-D-Inertial SLAM with Map Deformations - YouTube,” Sept
,
2017
. [Online]. Available: https://www.youtube.com/watch?v=-gUdQ0cxDh0. [Accessed: 03-May-2019].
31.
C.
Forster
,
M.
Pizzoli
, and
D.
Scaramuzza
, in
2014
IEEE Int. Conf. Robot. Autom
. (
IEEE
, 2014), pp.
15
22
.
32.
K.
Lai
,
L.
Bo
, and
D.
Fox
, in
Proc. - IEEE Int. Conf. Robot. Autom.
(
2014
).
33.
R.A.
Newcombe
,
A.J.
Davison
,
S.
Izadi
,
P.
Kohli
,
O.
Hilliges
,
J.
Shotton
,
D.
Molyneaux
,
S.
Hodges
,
D.
Kim
, and
A.
Fitzgibbon
, in
2011 10th IEEE Int. Symp. Mix. Augment. Real
. (
IEEE
, 2011), pp.
127
136
.
34.
H.
Hu
,
R.
Li
,
Z.
Long
,
Q.
Liu
, and
D.
Gu
,
Cognit. Comput.
10
,
260
(
2017
).
35.
Q.
Liu
,
R.
Li
,
H.
Hu
, and
D.
Gu
,
2016
22nd Int. Conf. Autom. Comput. ICAC 2016 Tackling New Challenges Autom. Comput.
89
(
2016
).
36.
C.
Yu
,
Z.
Liu
,
X.
Liu
,
F.
Xie
,
Y.
Yang
,
Q.
Wei
, and
Q.
Fei
, (
2018
).
37.
J.L.
Schonberger
,
M.
Pollefeys
,
A.
Geiger
, and
T.
Sattler
, in
2018 IEEE/CVF Conf. Comput. Vis. Pattern Recognit
. (
IEEE
, 2018), pp.
6896
6906
.
38.
E.
Stenborg
,
C.
Toft
, and
L.
Hammarstrand
, (
2018
).
39.
S.
Yang
,
Y.
Song
,
M.
Kaess
, and
S.
Scherer
,
IEEE Int. Conf. Intell. Robot. Syst.
2016–Novem,
1222
(
2016
).
40.
L.
Nicholson
,
M.
Milford
, and
N.
Sünderhauf
,
1
(
2018
).
41.
Vincent P.
Kee
and
Gian Luca
Mariottini
, (
2018
).
This content is only available via PDF.
You do not currently have access to this content.