Woven fabric composites based on different technical fiber material and different design architecture continue to be an attractive structural component against ballistic impact. Numerous studies have been conducted to identify material properties and design architecture that plays a role in determining the ballistic performance. This paper presents a short review on influence features that are important in enhancing the ballistic performance. Each of the features is outlined in depth including citation from its original references. Apart from this, an attempt to showcase trend in recent research publications and activity involves 2D, 3D and hybrid woven fabric composites is also covered. The reference list will provide a database for elementary knowledge and motivation for prospective research in woven composites.

1.
X.
Chen
, “1 - Introduction,” X. B. T.-A. F. C. M. for
B. P.
Chen
, Ed.
Woodhead Publishing
,
2016
, pp.
1
10
.
2.
P. K.
Mallick
,
Fiber- Reinforced Composites
, 3rd ed.
Boca Raton:CRC Press
,
2007
.
3.
V. Vara
Prasad
and
S.
Talupula
, “
A Review on Reinforcement of Basalt and Aramid (Kevlar 129) fibers
,” in
Materials Today: Proceedings
,
2018
, vol.
5
, no.
2
, pp.
5993
5998
.
4.
P. K.
Mallick
, “Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures,” in
Materials, Design and Manufacturing for Lightweight Vehicles
,
Woodhead Publishing
,
2010
, pp.
174
207
.
5.
Z. L.
Niu
,
L. M.
Jin
,
L. J.
Yu
,
B. Z.
Sun
,
P.
Chen
, and
J. Z.
Su
, “
Ballistic Penetration Damage of 2D Basalt Fiber Plain Woven Composite
,”
Adv. Mater. Res.
, vol.
487
, pp.
530
533
, Mar.
2012
.
6.
P.
Wambua
,
B.
Vangrimde
,
S.
Lomov
, and
I.
Verpoest
, “
The response of natural fibre composites to ballistic impact by fragment simulating projectiles
,”
Compos. Struct.
, vol.
77
, no.
2
, pp.
232
240
, Jan.
2007
.
7.
D. K.
Roylance
,
A. F.
Wilde
, and
G. C.
Tocc
, “
BALLISTIC IMPACT OF TEXTILE STRUCTURES
,”
1973
.
8.
J. W.
Song
and
B. L. (‘LES’)
Lee
, “
Fabrics and composites for ballistic protection of personnel
,”
Light. Ballist. Compos.
, pp.
210
239
, Jan.
2006
.
9.
I. G.
Crouch
,
L.
Arnold
,
A.
Pierlot
, and
H.
Billon
, “6 - Fibres, textiles and protective apparel BT - The Science of Armour Materials,” in
Woodhead Publishing in Materials
,
Woodhead Publishing
,
2017
, pp.
269
330
.
10.
P.
Mendis
,
T.
Ngo
,
C.
Yang
,
W.
Humphries
, and
P.
Tran
, “
Effect of Textile Architecture on Energy Absorption of Woven Fabrics Subjected to Ballistic Impact
,”
Appl. Mech. Mater.
, vol.
553
, no. May, pp.
757
762
,
2014
.
11.
A.
Laha
,
A.
Majumdar
,
I.
Biswas
,
S. K.
Verma
, and
D.
Bhattacharjee
, “
Role of Fabric Geometry in Ballistic Performance of Flexible Armour Panels
,”
Procedia Eng.
, vol.
173
, pp.
747
754
, Jan.
2017
.
12.
R. C.
Laible
, “
Fibrous Armor
,”
Methods Phenom.
, vol.
5
, pp.
73
115
, Jan.
1980
.
13.
B.
Kumar
and
J.
Hu
, “
Woven fabric structures and properties
,”
Eng. High-Performance Text.
, pp.
133
151
, Jan.
2018
.
14.
R. A.
Scott
,
P.
Potluri
, and
P.
Needham
, “
Technical textiles for protection
,”
Text. Prot.
, pp.
151
175
, Jan.
2005
.
15.
R. A.
Sanad
and
T.
Cassidy
, “
Fabric objective measurement and drape
,”
Text. Prog.
, vol.
47
, no.
4
, pp.
317
406
, Oct.
2015
.
16.
Y.
Duan
,
M.
Keefe
,
T. A.
Bogetti
,
B. A.
Cheeseman
, and
B.
Powers
, “
A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact
,”
Int. J. Impact Eng.
, vol.
32
, no.
8
, pp.
1299
1312
,
2006
.
17.
B. J.
Briscoe
and
F.
Motamedi
, “
the Ballistic Impact Characteristics of Aramid Fabrics - the Influence of Interface Friction
,”
Wear
, vol.
158
, no.
1–2
, pp.
229
247
,
1992
.
18.
D.
Sun
, “
Ballistic performance evaluation of woven fabrics based on experimental and numerical approaches
,”
Adv. Fibrous Compos. Mater. Ballist. Prot.
, no. October, pp.
409
435
,
2016
.
19.
R. Rathina
Moorthy
,
A.
Professor
, and
P.
Kandhavadivu
, “
Surface Friction Characteristics of Woven Fabrics with Nonconventional Fibers and their Blends
,”
2015
.
20.
M.
Karahan
,
A.
Kuş
, and
R.
Eren
, “
An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics
,”
Int. J. Impact Eng.
, vol.
35
, no.
6
, pp.
499
510
, Jun.
2008
.
21.
S.
Das
,
S.
Jagan
,
A.
Shaw
, and
A.
Pal
, “
Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact
,”
Compos. Struct.
, vol.
120
, pp.
129
140
,
2015
.
22.
B. A.
Cheeseman
and
T. A.
Bogetti
, “
Ballistic impact into fabric and compliant composite laminates
,”
Compos. Struct.
, vol.
61
, no.
1
, pp.
161
173
,
2003
.
23.
D.
Roylance
and
S.-S.
Wang
, “
Penetration Mechanics of Textile Structures
,”
1979
.
24.
T.-L.
Chu
,
C.
Ha-Minh
, and
A.
Imad
, “
A numerical investigation of the influence of yarn mechanical and physical properties on the ballistic impact behavior of a Kevlar KM2® woven fabric
,”
2016
.
25.
Q.
Sun
and
J. E.
Field
, “
High-speed photographic study of impact on fibers and woven fabrics
,” in
19th Intl Congress on High-Speed Photography and Photonics
,
1991
, vol.
1358
, p.
20
.
26.
P.
Cunniff
, “
Dimensionless Parameters for Optimization of Textile Based Body Armor Systems
,” in
Proceedings of the 18th International Symposium on Ballistics
,
1999
.
27.
B. L.
Lee
,
T. F.
Walsh
,
S. T.
Won
,
H. M.
Patts
,
J. W.
Song
, and
A. H.
Mayer
, “
Penetration failure mechanisms of armor-grade fiber composites under impact
,”
J. Compos. Mater.
, vol.
35
, no.
18
, pp.
1605
1633
,
2001
.
28.
C. T.
Lim
,
V. B. C.
Tan
, and
C. H.
Cheong
, “
Perforation of high-strength double-ply fabric system by varying shaped projectiles
,”
2002
.
29.
Y.
Chu
and
X.
Chen
, “
Finite element modelling effects of inter-yarn friction on the single-layer high- performance fabrics subject to ballistic impact
,”
Mech. Mater.
, vol.
126
, no. August, pp.
99
110
,
2018
.
30.
S.
Sakaguchi
,
D.
Carr
,
I.
Horsfall
, and
E.
Girvan
,
Protecting the extremities of military personnel: fragment protective performance of one- and two-layer ensembles
, vol.
82
.
2012
.
31.
J.
Breeze
,
C. J
Granger
,
T. D
Pearkes
, and
J.
Clasper
,
Ergonomic assessment of enhanced protection under body armour combat shirt neck collars
, vol.
160
.
2013
.
32.
I. G.
Crouch
, “4 - Laminated materials and layered structures BT - The Science of Armour Materials,” in
Woodhead Publishing in Materials
,
Woodhead Publishing
,
2017
, pp.
167
201
.
33.
B. L.
Lee
,
J. W.
Song
, and
J. E.
Ward
, “
Failure of Spectra® Polyethylene Fiber-Reinforced Composites under Ballistic Impact Loading
,”
J. Compos. Mater.
, vol.
28
, no.
13
, pp.
1202
1226
, Jul.
1994
.
34.
S.
Mohan
and
S.
Velu
, “
Ballistic impact behaviour of unidirectional fibre reinforced composites
,”
Int. J. Impact Eng.
, vol.
63
, pp.
164
176
, Jan.
2014
.
35.
J. G.
Carrillo
,
R. A.
Gamboa
,
E. A.
Flores-Johnson
, and
P. I.
Gonzalez-Chi
, “
Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix
,”
Polym. Test.
, vol.
31
, no.
4
, pp.
512
519
, Jun.
2012
.
36.
G.
Gopinath
,
J. Q.
Zheng
, and
R. C.
Batra
, “
Effect of matrix on ballistic performance of soft body armor
,”
Compos. Struct.
, vol.
94
, no.
9
, pp.
2690
2696
, Sep.
2012
.
37.
A.
Tasdemirci
,
G.
Tunusoglu
, and
M.
Güden
, “
The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study
,”
2012
.
38.
Y.
Wang
,
F.
Wang
,
X.
Yu
,
Z.
Ma
,
J.
Gao
, and
X.
Kang
, “
Effect of interlayer on stress wave propagation in CMC/RHA multi-layered structure
,”
Compos. Sci. Technol.
, vol.
70
, no.
12
, pp.
1669
1673
, Oct.
2010
.
39.
J. J.
Kruzic
,
J. M.
McNaney
,
R. M.
Cannon
, and
R. O.
Ritchie
, “
Effects of plastic constraint on the cyclic and static fatigue behavior of metal/ceramic layered structures
,”
Mech. Mater.
, vol.
36
, no.
1–2
, pp.
57
72
,
2004
.
40.
R. L.
Woodward
and
S. J.
Cimpoeru
, “
A study of the perforation of aluminium laminate targets
,”
Int. J. Impact Eng.
, vol.
21
, no.
3
, pp.
117
131
,
1998
.
41.
B. L.
Lee
,
J. W.
Song
, and
J. E.
Ward
, “
Failure of Spectra®* Polyethylene Fiber-Reinforced Composites under Ballistic Impact Loading
,”
J. Compos. Mater.
, vol.
28
, no.
13
, pp.
1202
1226
,
1994
.
42.
T.
Ebeling
,
A.
Hiltner
,
E.
Baer
,
I. M.
Fraser
, and
M. L.
Orton
, “
Delamination Failure of a Woven Glass Fiber Composite
,”
J. Compos. Mater.
, vol.
31
, no.
13
, pp.
1318
1333
, Jul.
1997
.
43.
M.
Tano
&
Glu
and
A.
Tu
&
Grul
Seyhan
, “
Investigating the effects of a polyester preforming binder on the mechanical and ballistic performance of E-glass fiber reinforced polyester composites
,”
2003
.
44.
K. L.
White
and
H.-J.
Sue
, “
Delamination toughness of fiber-reinforced composites containing a carbon nanotube/polyamide-12 epoxy thin film interlayer
,”
Polymer (Guildf).
, vol.
53
, no.
1
, pp.
37
42
, Jan.
2012
.
45.
A.
Vashisth
,
C. E.
Bakis
,
C. R.
Ruggeri
,
T. C.
Henry
, and
G. D.
Roberts
, “
Ballistic impact response of carbon/epoxy tubes with variable nanosilica content
,”
J. Compos. Mater.
, vol.
52
, no.
12
, pp.
1589
1604
,
2018
.
46.
M.
Arai
,
Y.
Noro
,
K.
Sugimoto
, and
M.
Endo
, “
Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer
,”
Compos. Sci. Technol.
, vol.
68
, no.
2
, pp.
516
525
, Feb.
2008
.
47.
J. M.
Esfahani
,
M.
Esfandeh
, and
A. R.
Sabet
, “
Analytical models versus experimental results for composites containing nanoclay as secondary reinforcement under high velocity impact
,”
Int. J. Crashworthiness
, vol.
17
, no.
4
, pp.
430
444
,
2012
.
48.
Shaktivesh
,
N. S.
Nair
,
C. V. Sesha
Kumar
, and
N. K.
Naik
, “
Ballistic impact performance of composite targets
,”
Mater. Des.
, vol.
51
, pp.
833
846
,
2013
.
49.
A. J. G.
Fernandes
,
W. F.
de Amorim
 Jr.
,
W. B.
Filho
,
I. P.
Guedes
,
A. L.
Silva
, and
W. L.
Porto
, “
Behavior of Fiberglass Polymer Composites under Ballistic Impact and Quasi-Static Punch Shear Tests
,”
Mater. Sci. Forum
, vol.
881
, pp.
300
306
, Nov.
2016
.
50.
L.
Alonso
,
C.
Navarro
, and
S. K.
García-Castillo
, “
Analytical models for the perforation of thick and thin thickness woven-laminates subjected to high-velocity impact
,”
2018
.
51.
N. K.
Naik
,
P.
Shrirao
, and
B. C. K.
Reddy
, “
Ballistic impact behaviour of woven fabric composites: Parametric studies
,”
Mater. Sci. Eng. A
, vol.
412
, no.
1–2
, pp.
104
116
,
2005
.
52.
N. K.
Naik
and
P.
Shrirao
, “
Composite structures under ballistic impact
,”
Compos. Struct.
, vol.
66
, no.
1–4
, pp.
579
590
,
2004
.
53.
K. S.
Pandya
,
C. V. S.
Kumar
,
N. S.
Nair
,
P. S.
Patil
, and
N. K.
Naik
, “
Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites
,”
Int. J. Damage Mech.
, vol.
24
, no.
4
, pp.
471
511
,
2015
.
54.
B. L.
Buitrago
,
S. K.
García-Castillo
, and
E.
Barbero
, “
Experimental analysis of perforation of glass/polyester structures subjected to high-velocity impact
,”
Mater. Lett.
, vol.
64
, no.
9
, pp.
1052
1054
,
2010
.
55.
E.
Sevkat
,
B.
Liaw
,
F.
Delale
, and
B. B.
Raju
, “
A combined experimental and numerical approach to study ballistic impact response of S2-glass fiber/toughened epoxy composite beams
,”
Compos. Sci. Technol.
, vol.
69
, no.
7–8
, pp.
965
982
,
2009
.
56.
A. K.
Bandaru
,
L.
Vetiyatil
, and
S.
Ahmad
, “
The effect of hybridization on the ballistic impact behavior of hybrid composite armors
,”
Compos. Part B
, vol.
76
, pp.
300
319
,
2015
.
57.
S. L.
Phoenix
,
A. K.
Yavuz
, and
P. K.
Porwal
, “
New Interference Approach for Ballistic Impact into Stacked Flexible Composite Body Armor
,”
AIAA J.
, vol.
48
, no.
2
, pp.
490
501
, Feb.
2010
.
58.
Y. B. Sudhir
Sastry
,
P. R.
Budarapu
,
Y.
Krishna
, and
S.
Devaraj
, “
Studies on ballistic impact of the composite panels
,”
Theor. Appl. Fract. Mech.
, vol.
72
, pp.
2
12
, Aug.
2014
.
59.
U. K.
Vaidya
,
C. A.
Ulven
,
M. V
Hosur
,
J.
Alexander
, and
L.
Liudahl
, “
Intermediate Velocity Impact Response of Carbon/Epoxy Composites with Polycarbonate Facing
,”
2003
.
60.
N. K.
Naik
and
P.
Shrirao
, “
Composite structures under ballistic impact
,”
Compos. Struct.
, vol.
66
, no.
1–4
, pp.
579
590
, Oct.
2004
.
61.
P.
Tran
,
T.
Ngo
,
E. C.
Yang
,
P.
Mendis
, and
W.
Humphries
, “
Effects of architecture on ballistic resistance of textile fabrics: Numerical study
,”
Int. J. Damage Mech.
, vol.
23
, no.
3
, pp.
359
376
,
2014
.
62.
C.
Yang
 et al., “
In fl uences of weaving architectures on the impact resistance of multi-layer fabrics
,”
J. Mater.
, vol.
112
, no. September 2017, pp.
282
295
,
2018
.
63.
D. P. C.
Aiman
,
M. F.
Yahya
, and
J.
Salleh
, “
Impact properties of 2D and 3D woven composites : A review
,”
2016
, vol.
020002
, p.
020002
.
64.
P. H.
Geubelle
and
J. S.
Baylor
, “
Impact-induced delamination of composites: a 2D simulation
,”
Compos. Part B Eng.
, vol.
29
, no.
5
, pp.
589
602
, Sep.
1998
.
65.
B. L.
Lee
,
J. W.
Song
, and
J. E.
Ward
, “
Failure of Spectra® Polyethylene Fiber-Reinforced Composites under Ballistic Impact Loading
,”
J. Compos. Mater.
, vol.
28
, no.
13
, pp.
1202
1226
, Jul.
1994
.
66.
L.
Iannucci
and
M. L.
Willows
, “
An energy based damage mechanics approach to modelling impact onto woven composite materials—Part I: Numerical models
,”
Compos. Part A Appl. Sci. Manuf.
, vol.
37
, no.
11
, pp.
2041
2056
, Nov.
2006
.
67.
J.-K.
Kim
and
M.-L.
Sham
, “
Impact and delamination failure of woven-fabric composites
,”
Compos. Sci. Technol.
, vol.
60
, no.
5
, pp.
745
761
, Apr.
2000
.
68.
M.
Ansar
,
W.
Xinwei
, and
Z.
Chouwei
, “
Modeling strategies of 3D woven composites: A review
,”
Compos. Struct.
, vol.
93
, no.
8
, pp.
1947
1963
,
2011
.
69.
C.
Ha-Minh
,
F.
Boussu
,
T.
Kanit
,
D.
Crépin
, and
A.
Imad
, “
Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis
,”
Appl. Compos. Mater.
, vol.
19
, no.
3–4
, pp.
333
347
, Jun.
2012
.
70.
W.
Shi
,
H.
Hu
,
B.
Sun
, and
B.
Gu
, “
Energy absorption of 3D orthogonal woven fabric under ballistic penetration of hemispherical-cylindrical projectile
,”
J. Text. Inst.
, vol.
102
, no.
10
, pp.
875
889
, Oct.
2011
.
71.
T. R.
Walter
,
G.
Subhash
,
B. V.
Sankar
, and
C. F.
Yen
, “
Damage modes in 3D glass fiber epoxy woven composites under high rate of impact loading
,”
Compos. Part B Eng.
, vol.
40
, no.
6
, pp.
584
589
, Sep.
2009
.
72.
Z.
Li
,
B.
Sun
, and
B.
Gu
, “
FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach
,”
Comput. Mater. Sci.
, vol.
49
, no.
1
, pp.
171
183
,
2010
.
73.
P.
Ma
,
L.
Jin
, and
L.
Wu
, “
Experimental and numerical comparisons of ballistic impact behaviors between 3D angle-interlock woven fabric and its reinforced composite
,”
J. Ind. Text.
, p.
152808371875490
, Jan.
2018
.
74.
C.-F.
Yen
and
B.
Boesl
, “
Progressive Failure Micromechanical Modeling of 3D Woven Composites
,” in
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
2011
.
75.
P.
Turner
,
T.
Liu
,
X.
Zeng
, and
K.
Brown
, “
Three-dimensional woven carbon fibre polymer composite beams and plates under ballistic impact
,”
Compos. Struct.
, vol.
185
, pp.
483
495
, Feb.
2018
.
76.
I. G.
Crouch
,
J.
Sandlin
, and
S.
Thomas
, “5 - Polymers and fibre-reinforced plastics BT - The Science of Armour Materials,” in
Woodhead Publishing in Materials
,
Woodhead Publishing
,
2017
, pp.
203
268
.
77.
F.
Ko
and
D.
Hartman
,
Impact behaviour of 2-D and 3-D glass/epoxy composites
, vol.
22
.
1986
.
78.
B.
Gu
,
Modelling of 3D woven fabrics for ballistic protection
.
Elsevier Ltd
,
2016
.
79.
P.
Udatha
,
C. V Sesha
Kumar
,
N. S.
Nair
, and
N. K.
Naik
, “
High velocity impact performance of three- dimensional woven composites
,”
J. Strain Anal. Eng. Des.
, vol.
47
, no.
7
, pp.
419
431
, Oct.
2012
.
80.
A. K.
Bandaru
,
V. V.
Chavan
,
S.
Ahmad
,
R.
Alagirusamy
, and
N.
Bhatnagar
, “
Ballistic impact response of Kevlar® reinforced thermoplastic composite armors
,”
Int. J. Impact Eng.
, vol.
89
, pp.
1
13
,
2016
.
81.
L.
Alonso
,
C.
Navarro
, and
S. K.
García-Castillo
, “
Experimental study of woven-laminates structures subjected to high-velocity impact
,”
Mech. Adv. Mater. Struct.
, pp.
1
7
, Oct.
2018
.
82.
M.
Pasquali
and
P.
Gaudenzi
, “
Effects of curvature on high-velocity impact resistance of thin woven fabric composite targets
,”
2017
.
83.
A. K.
Bandaru
and
S.
Ahmad
, “
Ballistic Impact Behaviour of Thermoplastic Kevlar Composites: Parametric Studies
,”
Procedia Eng.
, vol.
173
, pp.
355
362
,
2017
.
84.
C. S.
Meyer
 et al., “
Mesoscale ballistic damage mechanisms of a single-layer woven glass/epoxy composite
,”
Int. J. Impact Eng.
, vol.
113
, pp.
118
131
, Mar.
2018
.
85.
R.
Kamiya
,
B. A.
Cheeseman
,
P.
Popper
, and
T. W.
Chou
, “
Some recent advances in the fabrication and design of three-dimensional textile preforms: A review
,”
Compos. Sci. Technol.
, vol.
60
, no.
1
, pp.
33
47
,
2000
.
86.
C. H.
Chiu
and
C. C.
Cheng
, “
Weaving Method of 3D Woven Preforms for Advanced Composite Materials
,”
Text. Res. J.
, vol.
73
, no.
1
, pp.
37
41
,
2003
.
87.
3-D woven reinforcements update : Composites World
.” [Online]. Available: https://www.compositesworld.com/articles/3-d-woven-reinforcements-update. [Accessed: 02-May-2019].
88.
C. M.
Pastore
, “
Opportunities and challenges for textile reinforced composites
,”
Mech. Compos. Mater.
, vol.
36
, no.
2
, pp.
97
116
, Mar.
2000
.
89.
L.
Tong
,
A. P.
Mouritz
, and
M. K.
Bannister
,
3D fibre reinforced polymer composites
.
Elsevier
,
2002
.
90.
Y. M.
Kanitkar
,
A. P.
Kulkarni
, and
K. S.
Wangikar
, “
Characterization of Glass Hybrid composite: A Review
,”
Mater. Today Proc.
, vol.
4
, no.
9
, pp.
9627
9630
,
2017
.
91.
A. Kumar
Bandaru
,
L.
Vetiyatil
, and
S.
Ahmad
, “
The effect of hybridization on the ballistic impact behavior of hybrid composite armors
,”
2015
.
92.
K. S.
Pandya
,
J. R.
Pothnis
,
G.
Ravikumar
, and
N. K.
Naik
, “
Ballistic impact behavior of hybrid composites
,”
Mater. Des.
, vol.
44
, pp.
128
135
,
2013
.
93.
E.
Randjbaran
,
R.
Zahari
,
N.
Aswan
,
A.
Jalil
,
D.
Laila
, and
A.
Abdul
, “
Hybrid Composite Laminates Reinforced with Kevlar / Carbon / Glass Woven Fabrics for Ballistic Impact Testing
,” vol.
2014
,
2014
.
94.
B.
Sun
,
Y.
Liu
, and
B.
Gu
, “
A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite
,”
Compos. Part B Eng.
, vol.
40
, no.
6
, pp.
552
560
,
2009
.
95.
Y.
Yang
and
X.
Chen
, “
Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design
,”
Compos. Struct.
, vol.
164
, pp.
1
9
,
2017
.
96.
R.
Yahaya
,
S. M.
Sapuan
,
M.
Jawaid
,
Z.
Leman
, and
E. S.
Zainudin
, “
Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites
,”
Meas. J. Int. Meas. Confed.
, vol.
77
, pp.
335
343
,
2016
.
97.
A.
Ali
 et al., “
Ballistic impact properties of woven bamboo- woven E-glass- unsaturated polyester hybrid composites
,”
Def. Technol.
,
2018
.
98.
J.
Tirillò
 et al., “
High velocity impact behaviour of hybrid basalt-carbon/epoxy composites
,”
Compos. Struct.
, vol.
168
, pp.
305
312
,
2017
.
99.
A. K.
Bandaru
,
Y.
Sachan
,
S.
Ahmad
,
R.
Alagirusamy
, and
N.
Bhatnagar
, “
On the mechanical response of 2D plain woven and 3D angle-interlock fabrics
,”
Compos. Part B Eng.
, vol.
118
, pp.
135
148
,
2017
.
100.
G.
Nilakantan
and
S.
Nutt
, “
Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets
,”
Def. Technol.
, Jan.
2018
.
This content is only available via PDF.
You do not currently have access to this content.