Sick Building Syndrome (SBS) constitutes an important issue in the building sector. The growth of mold is one of the factors that contribute to this phenomenon. Excessive humidity of the indoor air and increasing moisture of building envelopes frequently lead to the appearance of mold. The substances emitted by the fungi include Volatile Organic Compounds (VOCs). Detection of VOCs in the indoor air can be performed using a number of methods, such as chromatography or gas sensor arrays. The latter produce electric signals which then are subjected to analysis by means of statistical methods of interpretation. The presented paper describes the application of unsupervised statistical classifying model (fuzzy clustering) for the assessment of the signals generated by gas sensors array, used in the investigation of the indoor air from different types of buildings. A Metal Oxide Semiconductor (MOS) sensors array was proposed for evaluating the mold threat in buildings. The sensor readouts pertaining to the air sampled from inside the buildings in varying degree of mold-contamination, compared with clean and synthetic air, were interpreted and presented.

1.
D.
Mudarri
, and
W. J.
Fisk
,
Indoor Air
,
17
,
226
235
(
2007
).
2.
Z.
Suchorab
, et al.,
PLoS ONE
14
: e0215179. (
2019
).
3.
G.
Łagód
, et al.,
AIP Conf. Proc.
1866
,
030002
(
2017
).
4.
Z.
Suchorab
, et al., Gas sensors array as a device to classify mold threat of the buildings.
Environmental Engineering V
, (
CRC Press-Balkema
,
Leiden
,
2017
), pp.
203
209
.
5.
M.
Jerman
, et al.,
Cem. Wap. Bet.
20
,
139
149
(
2015
).
6.
Z.
Suchorab
, et al.,
Ecol Chem Eng S.
21
,
401
411
(
2014
).
7.
P.
Brzyski
, et al.,
J. Nat. Fibers.
14
,
1
12
(
2017
).
8.
W.
Żukiewicz-Sobczak
, et al.,
Med. Og. N. Zdrow.
18
,
141
146
(
2012
).
9.
A. L.
Pasanen
, et al.,
Int. Biodeter. Biodegr.
30
,
273
283
(
1992
).
10.
S.
Morath
 et al.,
Fungal. Biol. Rev.
26
,
73
83
(
2012
).
11.
M.
Frąc
, et al.,
Front. Microbiol.
7
,
1
16
(
2016
).
12.
J. M.
Scotter
, et al.,
J. Microbiol. Methods.
63
,
127
134
(
2005
).
13.
F.
Pinzari
,
Indoor Build. Environ.
13
,
387
395
(
2004
).
14.
S. S.
Schiffman
, et al., “
Effectiveness of an Electronic Nose for Monitoring Bacterial and Fungal Growth
,” in
Proc. ISOEN
, (
2000
), pp.
173
180
.
15.
K.
Wilkins
, et al.,
Chemosphere.
41
,
437
446
(
2000
).
16.
M.
Kuske
, et al.,
Build. Environ.
40
,
824
831
(
2005
).
17.
M.
Kuske
, et al.,
Sens. Actuat. B Chem.
119
,
33
40
(
2006
).
18.
W.J.
Krzanowski
,
Principles of Multivariate Analysis
(
Oxford University Press
,
New York
,
2000
).
19.
A.
Smolarz
, et al.,
Exp. Therm. Fluid Sci.
43
,
82
89
(
2012
).
20.
M. C.
Thomas
and
J.
Romagnoli
.
Comput. Aided Chem. Eng.
38
,
859
864
(
2016
).
21.
L.
Guz
, et al.,
Przem. Chem.
89
,
378
381
(
2010
).
22.
Figaro
,
General information for TGS sensors
, pp.
1
12
(available on http://www.figarosensor.com,
2019
).
23.
S. H.
Mirhoseini
, et al.,
Aerosol Air Qual. Res.
16
,
1903
1910
(
2016
).
24.
E. H.
Ruspini
,
Information and Control
15
,
22
32
(
1969
).
25.
W. G.
Wee
, and
K. S.
Fu
.
IEEE Transactions on Systems Science and Cybernetics
5
,
215
23
. (
1969
).
26.
J. C.
Bezdek
,
J. Math. Biol.
1
,
57
71
(
1974
).
27.
J. C.
Dunn
,
J. Cybernetics
3
,
32
57
(
1974
).
28.
M. B.
Ferraro
and
P.
Giordani
,
Inf. Sci.
,
245
,
63
75
(
2013
).
29.
J. M.
Leski
,
Fuzzy Sets Syst.
286
,
114
133
(
2016
).
30.
D. E.
Gustafson
and
W. C.
Kessel
, “
Fuzzy Clustering With A Fuzzy Covariance Matrix
,” in
Proceedings of the IEEE Conference on Decision and Control
, (
1978
), pp.
761
66
.
31.
R Core Team
.
R: A Language and Environment for Statistical Computing
.
R Foundation for Statistical Computing
. 2017. (available on https://www.R-project.org,
2019
).
This content is only available via PDF.
You do not currently have access to this content.