The study is devoted to the application of Lattice Boltzmann Method (LBM) and the Unified Gas-Kinetic Scheme (UGKS) to the numerical simulations of micro-channel flows in transitional regime. Both methods present the variants of the meso-scale gas-dynamic approach. This way of mathematial modelling allows taking into account both micro- and macro-scale process of a flow. At the same time, UGKS saves much more physics from the micro-scale molecular interaction mechanism than LBM. It leads to much more demands in sense of numerical resources. The numerical results are presented for the Knudsen compressor flow.
REFERENCES
1.
2.
G.
Karniadakis
, A.
Beskok
, and N.
Aluru
, Microflows and Nanoflows Fundamentals and Simulation
(Springer
, New York
, 2005
).3.
H.
Struchtrup
, Macroscopic transport equations for rarefied gas flows
(Springer
, 2005
).4.
P.
Bhatnagar
, E.
Gross
, and M. A.
Krook
, Phys. Rev.
94
, 511
–525
(1954
).5.
6.
G. A.
Bird
, Molecular Gas Dynamics and The Direct Simulations of Gas Flows
(Oxford Univesity Press
, 1994
).7.
M.
Ivanov
, A.
Kashkovsky
, S.
Gimelshein
, G.
Markelov
, A.
Alekseenko
, Y.
Bondar
, G.
Zhukova
, S.
Nikiforov
, and P.
Vashchenkov
, Proceedings of 25th International symposium on rarefied gas dynamics. Saint-Petersburg
, Russia
539
–544
(2006
).8.
S.
Chapman
and T. G.
Cowling
, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases
(bambridge mathematical library
, 1991
).9.
H.
Grad
, Communications on Pure and Applied Mathematics
2
, 331
–407
(1949
).10.
M.
Torrilhon
, Multiscale Model. Simul.
5
, 695
–728
(2006
).11.
12.
I. A.
Znamenskaya
, I. E.
Ivanov
, I. A.
Kryukov
, I. V.
Mursenkova
, and M. Y.
Timokhin
, Tech. Phys. Lett.
40
, 533
–536
(2014
).13.
M.
Torrilhon
, Annu. Rev. Fluid Mech.
48
, 429
–458
(2016
).14.
K.
Xu
and J. C.
Huang
, J. Comput. Physics
229
, 7747
–7764
(2010
).15.
S.
Chen
and G. D.
Doolen
, Annu. Rev. Fluid Mech.
30
, 329
–364
(1998
).16.
S.
Succi
, The lattice Boltzmann equation: for fluid dynamics and beyond
(Oxford Univesity Press
, 2013
).17.
18.
D. A.
Perumal
, V.
Krishna
, G.
Sarvesh
, and A.
Dass
, International Journal of Recent Trends in Engineering
1
, 15
–20
(2009
).19.
M. Y.
Timokhin
, I. E.
Ivanov
, and I. A.
Kryukov
, AIP Conf. Proceedings
1628
, 748
–755
(2014
).20.
J.-C.
Huang
, K.
Xu
, and P.
Yu
, Commun. Comp. Phys.
12
, 662
–690
(2012
).21.
X. Y.
He
, S.
Chen
, and G. D.
Doolen
, J. Comput. Phys.
146
, p. 282
(1998
).22.
Y. H.
Zhang
, X. J.
Gu
, R. W.
Barber
, and D. R.
Emerson
, Europhysics Letters
77
, p. 30003
(2007
).23.
J. C.
Maxwell
, Phil. Trans. R. Soc. (London)
170
, 231
–256
(1879
).24.
J.-C.
Huang
, K.
Xu
, and P.
Yu
, Communications in Computational Physics
14
, p. 11471173
(2013
).25.
G. H.
Tang
, Y. H.
Zhang
, X. J.
Gu
, R. W.
Barber
, and D. R.
Emerson”
, Phys Rev. E
79
, p. 027701
(2009
).26.
Y.-L.
Han
, E. P.
Muntz
, A.
Alexeenko
, and M.
Young
, Nanoscale and Microscale Thermophysical Engineering
11
, 151
–175
(2007
), .27.
I. E.
Ivanov
, I. A.
Kryukov
, and M. Y.
Timokhin
, Comput. Math. Math. Phys.
53
, 1534
–1550
(2013
).28.
Y.-L.
Han
, E. P.
Muntz
, A.
Alexeenko
, and M.
Young
, Nanoscale and Microscale Thermophysical Engineering
11
, 151
–175
(2007
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.