The study is devoted to the application of Lattice Boltzmann Method (LBM) and the Unified Gas-Kinetic Scheme (UGKS) to the numerical simulations of micro-channel flows in transitional regime. Both methods present the variants of the meso-scale gas-dynamic approach. This way of mathematial modelling allows taking into account both micro- and macro-scale process of a flow. At the same time, UGKS saves much more physics from the micro-scale molecular interaction mechanism than LBM. It leads to much more demands in sense of numerical resources. The numerical results are presented for the Knudsen compressor flow.

1.
M.
Kogan
,
Rarefied gas dynamics
(
Plenum
,
New York
,
1969
).
2.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows Fundamentals and Simulation
(
Springer
,
New York
,
2005
).
3.
H.
Struchtrup
,
Macroscopic transport equations for rarefied gas flows
(
Springer
,
2005
).
4.
P.
Bhatnagar
,
E.
Gross
, and
M. A.
Krook
,
Phys. Rev.
94
,
511
525
(
1954
).
5.
E. M.
Shakhov
,
Fluid Dynamics
3
,
142
145
(
1968
).
6.
G. A.
Bird
,
Molecular Gas Dynamics and The Direct Simulations of Gas Flows
(
Oxford Univesity Press
,
1994
).
7.
M.
Ivanov
,
A.
Kashkovsky
,
S.
Gimelshein
,
G.
Markelov
,
A.
Alekseenko
,
Y.
Bondar
,
G.
Zhukova
,
S.
Nikiforov
, and
P.
Vashchenkov
,
Proceedings of 25th International symposium on rarefied gas dynamics. Saint-Petersburg
,
Russia
539
544
(
2006
).
8.
S.
Chapman
and
T. G.
Cowling
,
The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases
(
bambridge mathematical library
,
1991
).
9.
H.
Grad
,
Communications on Pure and Applied Mathematics
2
,
331
407
(
1949
).
10.
M.
Torrilhon
,
Multiscale Model. Simul.
5
,
695
728
(
2006
).
11.
A.
Erofeev
and
O.
Friedlander
,
Proc. of 25th Int. Symp. on RGD
117
124
(
2007
).
12.
I. A.
Znamenskaya
,
I. E.
Ivanov
,
I. A.
Kryukov
,
I. V.
Mursenkova
, and
M. Y.
Timokhin
,
Tech. Phys. Lett.
40
,
533
536
(
2014
).
13.
M.
Torrilhon
,
Annu. Rev. Fluid Mech.
48
,
429
458
(
2016
).
14.
K.
Xu
and
J. C.
Huang
,
J. Comput. Physics
229
,
7747
7764
(
2010
).
15.
S.
Chen
and
G. D.
Doolen
,
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
16.
S.
Succi
,
The lattice Boltzmann equation: for fluid dynamics and beyond
(
Oxford Univesity Press
,
2013
).
17.
G. H.
Tang
,
Y. H.
Zhang
, and
D.
Emerson
,
Phys. Rev.
77
, p.
046701
(
2008
).
18.
D. A.
Perumal
,
V.
Krishna
,
G.
Sarvesh
, and
A.
Dass
,
International Journal of Recent Trends in Engineering
1
,
15
20
(
2009
).
19.
M. Y.
Timokhin
,
I. E.
Ivanov
, and
I. A.
Kryukov
,
AIP Conf. Proceedings
1628
,
748
755
(
2014
).
20.
J.-C.
Huang
,
K.
Xu
, and
P.
Yu
,
Commun. Comp. Phys.
12
,
662
690
(
2012
).
21.
X. Y.
He
,
S.
Chen
, and
G. D.
Doolen
,
J. Comput. Phys.
146
, p.
282
(
1998
).
22.
Y. H.
Zhang
,
X. J.
Gu
,
R. W.
Barber
, and
D. R.
Emerson
,
Europhysics Letters
77
, p.
30003
(
2007
).
23.
J. C.
Maxwell
,
Phil. Trans. R. Soc. (London)
170
,
231
256
(
1879
).
24.
J.-C.
Huang
,
K.
Xu
, and
P.
Yu
,
Communications in Computational Physics
14
, p.
11471173
(
2013
).
25.
G. H.
Tang
,
Y. H.
Zhang
,
X. J.
Gu
,
R. W.
Barber
, and
D. R.
Emerson”
,
Phys Rev. E
79
, p.
027701
(
2009
).
26.
Y.-L.
Han
,
E. P.
Muntz
,
A.
Alexeenko
, and
M.
Young
,
Nanoscale and Microscale Thermophysical Engineering
11
,
151
175
(
2007
), .
27.
I. E.
Ivanov
,
I. A.
Kryukov
, and
M. Y.
Timokhin
,
Comput. Math. Math. Phys.
53
,
1534
1550
(
2013
).
28.
Y.-L.
Han
,
E. P.
Muntz
,
A.
Alexeenko
, and
M.
Young
,
Nanoscale and Microscale Thermophysical Engineering
11
,
151
175
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.