Carbon nanotubes (CNT) are one of the most widely used and ideal nanofluidic devices, especially for desalination. With an ever-increasing scarcity of freshwater, there is a strong need to reduce the energy cost associated with pumping water across nan-otube membranes, which are the most energy efficient devices for desalination. It becomes important to study novel mechanisms used to transport water molecules through carbon nanotubes and to compare the effectiveness and rate of fluid flow provided by them. In this study, we have considered three popular non-conventional mechanisms for pumping water through a CNT, namely, thermally driven flows, by rotating chiral CNT and by applying AC electric field across a carbon nanotube. Using molecular dynamics simulations, these mechanisms are studied to understand the flow behavior inside carbon nanotubes. Based on the promising results from the rotating chiral CNT mechanism of water pumping, we investigate this mechanism thoroughly using liquid argon to save on computational time. We also propose a simple addition to the device in the form of a coaxially rotating nanotube, which was found to increase the flux of argon at certain rotational speeds. We then extend this work to water molecules to find if the coaxial CNT system holds much promise for pumping water at nanoscales.

1.
S.
Iijima
,
Nature
354
,
56
58
nov (
1991
).
2.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature
414
,
188
190
nov (
2001
).
3.
A. I.
Skoulidas
,
D. M.
Ackerman
,
J. K.
Johnson
, and
D. S.
Sholl
,
Physical Review Letters
89
, p.
185901
oct (
2002
).
4.
M.
Majumder
,
N.
Chopra
,
R.
Andrews
, and
B. J.
Hinds
,
Nature
438
,
44
44
nov (
2005
).
5.
J. K.
Holt
,
H. G.
Park
,
Y.
Wang
,
M.
Stadermann
,
A. B.
Artyukhin
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
,
Science
(New York, N.Y.)
312
,
1034
7
may (
2006
).
6.
A. S.
Brady-Estévez
,
S.
Kang
, and
M.
Elimelech
,
Small
4
,
481
484
mar (
2008
).
7.
H.
Li
,
Y.
Gao
,
L.
Pan
,
Y.
Zhang
,
Y.
Chen
, and
Z.
Sun
,
Water Research
42
,
4923
4928
dec (
2008
).
8.
F.
Fornasiero
,
H. G.
Park
,
J. K.
Holt
,
M.
Stadermann
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
,
Proceedings of the National Academy of Sciences of the United States of America
105
,
17250
5
nov (
2008
).
9.
B.
Corry
,
Journal of Physical Chemistry B
112
,
1427
1434
(
2008
).
10.
L.
Zhao
,
Y.
Zhao
, and
R.
Zhou
,
The Journal of Physical Chemistry C
116
,
13429
13434
(
2012
).
11.
J.-w.
Feng
,
H.-m.
Ding
,
C.-l.
Ren
, and
Y.-q.
Ma
,
Nanoscale
6
,
13606
13612
oct (
2014
).
12.
Z. C.
Tu
and
X.
Hu
,
Physical Review B
72
, p.
033404
jul (
2005
).
13.
B.
Wang
,
L. V.
Vukovic
, and
P.
Král
, (
2008
), .
14.
K.
Cai
,
J.
Yu
,
J.
Shi
, and
Q. H.
Qin
,
Scientific Reports
6
, p.
27338
jul (
2016
).
15.
K.
Cai
,
X.
Zhang
,
J.
Shi
, and
Q. H.
Qin
,
Nanotechnology
28
, p.
155701
apr (
2017
).
16.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
The Journal of Chemical Physics
79
,
926
935
jul (
1983
).
17.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer simulation using particles.
(
A. Hilger
,
1988
).
18.
B. R.
Brooks
,
C. L.
Brooks
,
A. D.
Mackerell
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
,
A.
Caflisch
,
L.
Caves
,
Q.
Cui
,
A. R.
Dinner
,
M.
Feig
,
S.
Fischer
,
J.
Gao
,
M.
Hodoscek
,
W.
Im
,
K.
Kuczera
,
T.
Lazaridis
,
J.
Ma
,
V.
Ovchinnikov
,
E.
Paci
,
R. W.
Pastor
,
C. B.
Post
,
J. Z.
Pu
,
M.
Schaefer
,
B.
Tidor
,
R. M.
Venable
,
H. L.
Woodcock
,
X.
Wu
,
W.
Yang
,
D. M.
York
, and
M.
Karplus
,
Journal of Computational Chemistry
30
,
1545
1614
jul (
2009
).
19.
S.
Plimpton
,
Journal of Computational Physics
117
,
1
19
mar (
1995
), arXiv:nag.2347 [10.1002].
20.
Q.
Tu
,
Q.
Yang
,
H.
Wang
, and
S.
Li
,
Scientific Reports
6
, p.
26183
sep (
2016
).
21.
M. J.
Longhurst
and
N.
Quirke
,
Nano Letters
7
,
3324
3328
(
2007
).
22.
S.
Joseph
and
N. R.
Aluru
,
Physical Review Letters
101
, p.
064502
aug (
2008
).
23.
H. J.
Berendsen
,
J. P.
Postma
,
W. F.
Van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
,
The Journal of Chemical Physics
81
,
3684
3690
oct (
1984
), arXiv:arXiv:1011.1669v3.
24.
T.
Mutat
, Structure of Carbon Nanotubes,.
25.
R.
Nadeem
,
Lennard-Jones Potential - Chemistry LibreTexts
,
2017
.
26.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
,
Physical Review Letters
97
, p.
170201
oct (
2006
).
27.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
,
The Journal of chemical physics
128
, p.
134106
(
2008
).
28.
N.
Tariq
,
N. A.
Taisan
,
V.
Singh
, and
J. D.
Weinstein
,
Physical Review Letters
110
, p.
153201
apr (
2013
).
29.
J. L. F.
Abascal
,
E.
Sanz
, and
C.
Vega
,
Phys. Chem. Chem. Phys.
11
,
556
562
jan (
2009
).
30.
T. E.
Markland
,
S.
Habershon
, and
D. E.
Manolopoulos
,
The Journal of Chemical Physics
128
, p.
194506
may (
2008
).
31.
M. A.
González
and
J. L. F.
Abascal
,
The Journal of Chemical Physics
132
, p.
096101
mar (
2010
).
32.
P.
Mark
and
L.
Nilsson
,
Journal of Physical Chemistry A
105
,
9954
9960
(
2001
).
33.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
34
(
1983
).
34.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
,
Journal of Computational Physics
23
,
327
341
mar (
1977
).
35.
P. M.
Morse
,
Physical Review
34
,
57
64
jul (
1929
).
36.
R. A.
Buckingham
,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
168
,
264
283
oct (
1938
).
37.
H. J.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
Journal of Physical Chemistry
91
,
6269
6271
nov (
1987
).
38.
S.
Chatterjee
,
P. G.
Debenedetti
,
F. H.
Stillinger
, and
R. M.
Lynden-Bell
,
The Journal of Chemical Physics
128
, p.
124511
mar (
2008
).
39.
J. E.
Jones
,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
106
,
463
477
oct (
1924
), arXiv:0511310 [arXiv:cond-mat].
40.
J. L. F.
Abascal
and
C.
Vega
,
The Journal of Chemical Physics
123
, p.
234505
dec (
2005
).
41.
E.
Polak
and
G.
Ribiére
,
Rev. Francaise Informat Recherche Opertionelle
3e Ann è e
,
35
43
(
1969
).
42.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Physical Review B - Condensed Matter and Materials Physics
69
, p.
134103
apr (
2004
).
43.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
The Journal of Chemical Physics
101
,
4177
4189
sep (
1994
), arXiv:0502063v2 [arXiv:hep-ph].
44.
M.
Parrinello
and
A.
Rahman
,
Journal of Applied Physics
52
,
7182
7190
dec (
1981
), arXiv:arXiv:1011.1669v3.
45.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
,
Journal of Physics A: Mathematical and General
39
,
5629
5651
may (
2006
).
46.
G.
Amy
,
N.
Ghaffour
,
Z.
Li
,
L.
Francis
,
R. V.
Linares
,
T.
Missimer
, and
S.
Lattemann
,
Desalination
401
,
16
21
jan (
2017
).
47.
J. W.
McBain
and
S. S.
Kistler
,
The Journal of Physical Chemistry
35
,
130
136
jan (
1930
).
48.
J. D.
Birkett
,
Desalination
50
,
17
52
jan (
1984
).
49.
PTI, Maharashtra: 3,228 farmer suicides in 2015, highest in 14 years, 2016.
50.
Q.
Tu
,
Q.
Yang
,
H.
Wang
, and
S.
Li
,
Scientific Reports
6
, p.
26183
sep (
2016
).
51.
B.
Wang
and
P.
Král
,
Physical Review Letters
98
(
2007
), .
52.
H.
Qiu
,
R.
Shen
, and
W.
Guo
,
Nano Res
4
,
284
289
(
2011
).
53.
M.
Chen
,
J.
Zang
,
D.
Xiao
,
C.
Zhang
, and
F.
Liu
,
Nano Research
2
,
938
944
(
2009
).
54.
T.
Natsuki
,
T.
Hayashi
, and
M.
Endo
,
Journal of Applied Physics
97
, p.
044307
feb (
2005
).
55.
W. H.
Duan
and
Q.
Wang
,
ACS Nano
4
,
2338
2344
(
2010
).
56.
Q.
Wang
,
Nano Letters
9
,
245
249
(
2009
).
57.
T.
Chang
,
Physical Review Letters
101
(
2008
), .
58.
P.
Král
and
D.
Tománek
,
Physical Review Letters
82
,
5373
5376
jun (1999).
59.
K.
Ritos
,
M. K.
Borg
,
N. J.
Mottram
, and
J. M.
Reese
,
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
374
, p.
20150025
feb (
2016
).
60.
K. F.
Rinne
,
S.
Gekle
,
D. J.
Bonthuis
, and
R. R.
Netz
,
Nano Letters
12
,
1780
1783
(
2012
).
61.
Y.
Wang
,
Y. J.
Zhao
, and
J. P.
Huang
,
Journal of Physical Chemistry B
115
,
13275
13279
(
2011
).
62.
J.
Su
and
H.
Guo
,
ACS Nano
5
,
351
359
(
2011
).
63.
M. E.
Suk
and
N. R.
Aluru
,
Physical Review Letters
105
, p.
209402
nov (
2010
).
64.
G.
Zuo
,
R.
Shen
,
S.
Ma
, and
W.
Guo
,
ACS Nano
4
,
205
210
(
2010
).
65.
J.
Wong-ekkabut
,
M. S.
Miettinen
,
C.
Dias
, and
M.
Karttunen
,
Nature Nanotechnology
5
,
555
557
aug (
2010
).
66.
D. J.
Bonthuis
,
K.
Falk
,
C. N.
Kaplan
,
D.
Horinek
,
A. N.
Berker
,
L.
Bocquet
, and
R. R.
Netz
,
Physical Review Letters
105
, p.
209401
nov (
2010
).
67.
X.
Gong
,
J.
Li
,
H.
Lu
,
R.
Wan
,
J.
Li
,
J.
Hu
, and
H.
Fang
,
Nature Nanotechnology
2
,
709
712
nov (
2007
).
68.
E.
Oyarzua
,
J. H.
Walther
,
C. M.
Megaridis
,
P.
Koumoutsakos
, and
H. A.
Zambrano
,
ACS Nano
11
,
9997
10002
(
2017
).
69.
F.
Faraji
and
A.
Rajabpour
,
Physics of Fluids
28
, p.
092004
sep (
2016
).
70.
K.
Zhao
and
H.
Wu
,
Nano Letters
15
,
3664
3668
(
2015
).
71.
S.
Vaitheeswaran
,
J. C.
Rasaiah
, and
G.
Hummer
,
The Journal of Chemical Physics
121
,
234706
926
(
2004
).
72.
S.
Joseph
,
R. J.
Mashl
,
E.
Jakobsson
, and
N. R.
Aluru
,
Nano Letters
3
,
1399
1403
(
2003
).
73.
Z.
Wang
,
L.
Ci
,
L.
Chen
,
S.
Nayak
,
P. M.
Ajayan
, and
N.
Koratkar
,
Nano Letters
7
,
697
702
(
2007
).
74.
N.
Wei
,
H.-Q.
Wang
, and
J.-C.
Zheng
,
Nanoscale Research Letters
7
, p.
154
feb (
2012
).
75.
I.
Santamaŕıa-Holek
,
D.
Reguera
, and
J. M.
Rubi
,
The Journal of Physical Chemistry C
117
,
3109
3113
feb (
2013
).
76.
J.
Chen
,
Y.
Gao
,
C.
Wang
,
R.
Zhang
,
H.
Zhao
, and
H.
Fang
,
The Journal of Physical Chemistry C
119
,
17362
17368
jul (
2015
).
77.
H. A.
Zambrano
,
J. H.
Walther
, and
R. L.
Jaffe
,
The Journal of Chemical Physics
131
, p.
241104
dec (
2009
).
78.
N.
Wei
,
H.-Q.
Wang
, and
J.-C.
Zheng
,
Nanoscale Research Letters
7
, p.
154
feb (
2012
).
79.
H. A.
Zambrano
,
J. H.
Walther
,
P.
Koumoutsakos
, and
I. F.
Sbalzarini
,
Nano Letters
9
,
66
71
(
2009
).
80.
Z.
Insepov
,
D.
Wolf
, and
A.
Hassanein
,
Nano Letters
6
,
1893
1895
(
2006
).
81.
P. A. E.
Schoen
,
J. H.
Walther
,
S.
Arcidiacono
,
D.
Poulikakos
, and
P.
Koumoutsakos
,
Nano Letters
6
,
1910
1917
(
2006
).
82.
J.
Shiomi
and
S.
Maruyama
,
Nanotechnology
20
, p.
055708
feb (
2009
).
83.
K.
Gethard
,
O.
Sae-Khow
, and
S.
Mitra
,
ACS Appl. Mater. Interfaces
3
,
110
114
(
2011
).
84.
A.
Barreiro
,
R.
Rurali
,
E. R.
Hernández
,
J.
Moser
,
T.
Pichler
,
L.
Forró
, and
A.
Bachtold
,
Science
(New York, N.Y.)
320
,
775
8
may (
2008
).
85.
K.
Gethard
,
O.
Sae-Khow
, and
S.
Mitra
,
Separation and Purification Technology
90
,
239
245
apr (
2012
).
86.
K.
Hata
,
D. N.
Futaba
,
K.
Mizuno
,
T.
Namai
,
M.
Yumura
,
S.
Iijima
,
A.
Noy
, and
O.
Bakajin
,
Science
(New York, N.Y.)
306
,
1362
4
nov (
2004
).
87.
P.
Král
and
B.
Wang
,
Material drag phenomena in nanotubes
,
2013
.
88.
M. A.
Shannon
,
P. W.
Bohn
,
M.
Elimelech
,
J. G.
Georgiadis
,
B. J.
Mariñas
, and
A. M.
Mayes
,
Nature
452
,
301
310
mar (
2008
).
89.
K.
Hata
,
D. N.
Futaba
,
K.
Mizuno
,
T.
Namai
,
M.
Yumura
,
S.
Iijima
,
A.
Noy
, and
O.
Bakajin
,
Science
(New York, N.Y.)
306
,
1362
4
nov (
2004
).
90.
S.
Kim
,
T. W.
Pechar
, and
E.
Marand
,
Desalination
192
,
330
339
may (
2006
).
91.
H.
Cong
,
J.
Zhang
,
M.
Radosz
, and
Y.
Shen
,
Journal of Membrane Science
294
,
178
185
may (
2007
).
92.
N. S
,
J Chem Phys
81
,
511
519
(
1984
).
93.
94.
E.
Polak
and
G.
Ribire
,
Rev. Francaise Informat Recherche Operationelle
16
, p.
3543
(
1969
).
This content is only available via PDF.
You do not currently have access to this content.