How to solve the hypersonic aerothermodynamics around large-scale uncontrolled spacecraft during falling disintegrating process from outer space to earth, is the key to predict the flight track of the end-of-life spacecraft reentry crash. To study aerodynamics of spacecraft reentry covering various flow regimes, the Gas-Kinetic Unified Algorithm (GKUA) has been presented by computable modeling of the collision integral of the Boltzmann equation over tens of years. On this basis, the rotational and vibrational energy modes are considered as the independent variables of the gas molecular velocity distribution function, a kind of Boltzmann model equation involving internal energy excitation is constructed by decomposing the collision term of the Boltzmann equation into elastic and inelastic collision terms under the conservation of the summation invariant and the H-theorem. The unified algorithm of the Boltzmann model equation involving thermodynamics non-equilibrium effect is presented for the whole range of flow regimes. The gas-kinetic massive parallel computing strategy is developed to solve the hypersonic aerothermodynamics with the processor cores of 512∼115000 at least 90% parallel efficiency. To validate the accuracy of the GKUA, the hypersonic flows are simulated including the reentry Tiangong-1 spacecraft shape with the wide range of Knudsen numbers of 260∼0.00005 by the comparison of the related results from the DSMC and N-S coupled methods, and the low-density tunnel experiment etc. For uncontrolled spacecraft falling problem, the finite-element algorithm of dynamic thermal-force coupling response is presented, and the unified simulation of the thermal structural response and the hypersonic flow field is tested on the vertical plate, hollow sphere and Tiangong-1 shape under the reentry aerodynamic environment. Then, the forecasting analysis platform of end-of-life large-scale spacecraft flying track is established on the basis of ballistic computation combined with reentry aerothermodynamics and deformation failure/ablation/disintegration.

1.
C.M.
Reynerson
, “
Reentry Debris Envelope Model for a Disintegrating, Deorbiting Spacecraft Without Heat Shields” in
Proc. of the AIAA Atmospheric Flight Mechanics Conference and Exhibit
, AIAA 2005-5916, Aug.15∼18,
2005
.
2.
M.
Reyhanoglu
,
J.
Alvarado
,
Acta Astronautica
86
(
2013
)
211
218
.
3.
M.
Reyhanoglu
,
J.
Alvarado
,
Acta Astronautica
86
(
2013
)
211
218
.
4.
Balakrishnan
D.
,
Kurian
J.
,
Journal of Spacecraft and Rockets
, pp
1
10
, ,
2014
.
5.
Z.-H.
Li
,
Q.
Ma
,
J.-Z.
Cui
,
Communications in Computational Physics
, Vol.
20
, No.
3
, pp.
773
810
,
2016
.
6.
S.
Chapmann
and
T.G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed.,
Cambridge
:
Cambridge Univ. Press
,
1990
.
7.
P. L.
Bhatnagar
,
E.P.
Gross
and
M.
Krook
,
Phys. Rev.
94
,
511
525
(
1954
).
8.
W. G.
Vincenti
and
C.H.
Kruger
,
Introduction to Physical Gas Dynamics
,
New York
:
Wiley Press
,
1965
.
9.
Jr. 
L. H.
Holway
,
Phys. Fluids
9
,
1658
1673
(
1966
).
10.
E. M.
Shakhov
,
Fluid Dynamics
3
,
158
161
(
1968
).
11.
J. Y.
Yang
and
J. C.
Huang
,
J. Comput. Phys.
120
,
323
339
(
1995
).
12.
K.
Aoki
,
K.
Kanba
and
S.
Takata
,
Phys. Fluids
9
,
1144
1161
(
1997
).
13.
F. G.
Tcheremissine
,
Computers & Mathematics with Applications
,
35
(
1-2
),
215
221
(
1998
)
14.
V. A.
Titarev
,
E. M.
Shakhov
,
Fluid Dynamics
37
,
126
137
(
2002
).
15.
Z.H.
Li
,
H.X.
Zhang
,
Journal of Computational Physics
,
193
,
708
738
(
2004
)
16.
V.I.
Kolobov
,
R.R.
Arslanbekov
,
V.V.
Aristov
,
A.A.
Frolova
,
S.A.
Zabelok
,
J. of Comput. Phys.
,
223
:
589
608
,
2007
.
17.
K.
Xu
,
J.C.
Huang
,
J. Comput. Phys.
,
2010
,
229
:
7747
7764
.
18.
Z. H.
Li
,
A.P.
Peng
,
H.X.
Zhang
,
J.Y.
Yang
,
Progress in Aerospace Sciences
,
74
,
81
113
(
2015
)
19.
O. A.
Rogozin
,
European Journal of Mechanics-B/Fluids
,
60
,
148
163
(
2016
)
20.
Huang
AB
,
Giddens
DP
. In:
Proceedings of 5th International Symposium on Rarefied Gas Dynamics
, edited by
C.L.
Brundin
,
New York
, Vol.
1
,
481
486
,
1967
.
21.
Z.H.
Li
,
H.X.
Zhang
,
Study on Gas Kinetic Algorithm for Flows from Rarefied Transition to Continuum
,
Proc. of 22ⁿᵈ International Symposium on Rarefied Gas Dynamics
, pp.
628
636
,
Sydney, Australia
,
2000
.
22.
Z.H.
Li
,
H.X.
Zhang
,
International Journal for Numerical Methods in Fluids
2003
;
42
:
361
382
.
23.
Z.H.
Li
,
H.X.
Zhang
,
J. Comput. Phys.
228
(
2009
)
1116
1138
.
24.
Z.H.
Li
,
L.
Bi
,
H.X.
Zhang
,
L.
Li
.
Computers and Mathematics with Application
61
(
12
) (
2011
)
3653
3667
.
25.
Peng
A P
,
Li
Z H
,
Wu
J L
,
Jiang
X Y
2016
J. Comput. Phys.
327
919
.
26.
Z. H.
Li
,
A.P.
Peng
,
H.X.
Zhang
,
J.Y.
Yang
,
Progress in Aerospace Sciences
,
74
,
81
113
(
2015
)
27.
Peng
A P
,
Li
Z H
,
Wu
J L
,
Jiang
X Y
2016
Acta Phys. Sin.
,
66
(
20
),
204703
(
2017
).
28.
Z.-H.
Li
,
Q.
Ma
,
J.-Z.
Cui
,
Journal of Computational Physics
,
314
(
2016
)
712
748
.
29.
Q.
Ma
,
Z.H.
Li
,
J.Z.
Cui
,
Computer Methods in Applied Mechanics and Engineering
,
340
(
2018
)
340
365
.
30.
J.
Frischkorn
,
S.
Reese
,
Comput. Methods Appl. Mech. Engrg.
291
(
2015
)
42
63
.
31.
W.
Gu
,
P
Wang
,
J. of Applied Mathematics
2014
, ID560567,
1
6
.
32.
Liang
J
,
Li
Z H
,
Li
X G
, et al. 
An efficient collision limiter Monte Carlo simulation for hypersonic near-continuum flows[C]//
Proceedings of 30th International Symposium on Rarefied Gas Dynamics
,
2016
,
1786
:
050003
.
This content is only available via PDF.
You do not currently have access to this content.