The Direct Simulation Monte Carlo (DSMC) method has been used for more than 50 years to simulate rarefied gases. The advent of modern supercomputers has brought higher-density near-continuum flows within range. This in turn has revived the debate as to whether the Boltzmann equation, which assumes molecular chaos, can be used to simulate continuum flows when they become turbulent. In an effort to settle this debate, two canonical turbulent flows are examined, and the results are compared to available continuum theoretical and numerical results for the Navier-Stokes equations.

1.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1998
).
2.
H.
Grad
,
J. Chem. Phys.
33
(
5
),
1342
(
1960
).
3.
S.
Tsugé
,
Phys. Fluids
17
(
1
),
22
(
1974
).
4.
M. N.
Kogan
,
Rarefied Gas Dynamics
(
Plenum Press
,
New York
,
1969
).
5.
V. V.
Aristov
,
Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows
(
Springer
,
New York
,
2001
).
6.
G. I.
Taylor
and
A. E.
Green
,
Proc. Royal Soc. Lon.
158
(
895
),
499
(
1937
).
7.
M. E.
Brachet
,
D. I.
Meiron
,
S. A.
Orszag
,
B. G.
Nickel
,
R. H.
Morf
, and
U.
Frisch
,
J. Fluid Mech.
130
,
411
(
1983
).
8.
S. J.
Plimpton
and
M. A.
Gallis
, “
SPARTA Direct Simulation Monte Carlo (DSMC) Simulator
,” http://sparta.sandia.gov (
2015
).
9.
G. A.
Bird
,
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
,
Phys. Fluids
21
(
1
),
017103
, 1 (
2009
).
10.
P. F.
Fischer
and
J. W.
Lottes
, in
Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering
40
,
T. J.
Barth
 et al., Ed., Berlin (
Springer
,
Berlin Heidelberg
,
2005
).
11.
W. M.
van Rees
,
A.
Leonard
,
D. I.
Pullin
, and
P.
Koumoutsakos
,
J. Comput. Phys.
230
(
05
),
2794
(
2011
).
12.
M. A.
Gallis
,
T. P.
Koehler
,
J. R.
Torczynski
,
S. J.
Plimpton
,
G.
Papadakis
,
Phys. Rev. Lett.
118
,
064501
(
2017
).
13.
J.
Jimenez
and
P.
Moin
,
J. Fluid Mech.
225
,
213
(
1991
).
14.
D. J.
Rader
,
M. A.
Gallis
,
J. R.
Torczynski
, and
W.
Wagner
,
Phys. Fluids
18
,
077102
(
2006
).
15.
K. H.
Bech
,
N.
Tillmark
,
P. H.
Alfredsson
, and
H. I.
Andersson
,
J. Fluid Mech.
286
,
291
(
1995
).
16.
M. A.
Gallis
,
J. R.
Torczynski
,
N. P.
Bitter
,
T. P.
Koehler
,
S. J.
Plimpton
, and
G.
Papadakis
,
Phys. Rev. Fluids
3
,
071402(R
) (
2018
).
This content is only available via PDF.
You do not currently have access to this content.