Certifying a transport airplane for the flights under icing conditions requires calculations aimed at definition of the dimensions and shapes of the ice formed on the airplane surfaces. Up to date, software developed in Russia for simulation of ice accretion and authorized by Russian certifying supervisory authority, is absent. The paper describes methodology IceVision recently developed in Russia for calculations of ice accretion on airplane surfaces. This methodology is implemented in CFD software FlowVision used by numerous companies and universities in Russia and abroad. The methodology differs from known approaches to simulation of ice accretion. In particular, changing the ice shape is calculated with use of technology VOF. This technology assumes calculations of continuous ice growth accompanied by local rebuilding the computational mesh. The implemented mathematical model provides capability to simulate formation of rime (dry) and glaze (wet) ice. Numerical solutions of validation test problems performed using methodology IceVision are demonstrated.

1.
F. H.
Ludlam
,
Quarterly Journal of the Royal Meteorological Society
77
(
1
),
663
666
(
1951
).
2.
B. L.
Messinger
,
Journal of the Aeronautical Sciences
20
(
1
),
29
42
(
1953
).
3.
F. H.
Lozowski
,
J. R.
Stallabras
and
P. F.
Hearty
, “
The icing of an unheated non-rotating cylinder in liquid water droplet-ice crystal clouds
”,
National Research Council (NRC). Laboratory report LTR-LT-96
,
1979
.
4.
W. B.
Wright
, “
User’s manual for the Improved NASA Lewis ice accretion code LEWICE 1.6
”,
National Aeronautical and Space Administration (NASA), Contractor Report
,
1995
.
5.
W. B.
Wright
and
A.
Rutkowski
, “
Validation results for LEWICE 2.0
”,
NASA, Tech. rep. CR 1999–208690
,
1999
.
6.
W.
Wright
,
P.
Struk
,
T.
Bartkus
and
G.
Addy
, “
Recent advances in the LEWICE icing model
”, in
SAE Technical Paper 2015-01-2094
,
2015
.
7.
D.
Guffond
and
R.
Hedde
, “
Henry Overview of icing research at ONERA, Advisory Group for Aerospace Research and Development
”, in
Fluid Dynamics Panel (AGARD/FDP) Joint International Conference on Aircraft Flight Safety – Actual Problems of Aircraft Development
(
Zhukovsky, Russia
,
1993
),
7
p.
8.
E.
Montreuil
,
A.
Chazottes
,
D.
Guffond
,
A.
Murrone
,
F.
Caminade
and
S.
Catris
, “
Enhancement of prediction capability in icing accretion and related performance penalties; part i: Three-dimensional cfd prediction of the ice accretion
”, in
1st AIAA Atmospheric and Space Environments Conference
(
San Antonio, TX
,
2002
)
AIAA Paper
2009
3969
.
9.
R. W.
Gent
, “
TRAJICE2, a combined water droplet and ice accretion prediction program for aerofoil
”,
Royal Aerospace Establishment (RAE). — Farnborough, Hampshire, Tech. rep. No. TR90054
,
1990
.
10.
W. B.
Wright
,
R.
Gent
and
D.
Guffond
, “
DRA/NASA/ONERA collaboration on icing research part II - prediction of airfoil ice accretion
”,
NASA, Tech. rep. CR–202349
,
1997
.
11.
P.
Tran
,
M. T.
Brahimi
,
I. P. A.
Paraschivoiu
and
F.
Tezok
, “
Ice accretion on aircraft wings with thermodynamic effects
” in
American Institute of Aeronautics and Astronautics, 32-nd Aerospace Sciences Meeting and Exhibition
(
Reno, NV
,
1994
)
AIAA paper
No.
0605
,
9
p.
12.
A.
Pueyo
,
D.
Chocron
and
F.
Kafyeke
, “
Improvements to the ice accretion code CANICE
”, in
Proceedings of the 8th Canadian Aeronautics and Space Institute (CASI) Aerodynamic Symposium
(
Toronto, Canada
,
2001
)
9
p.
13.
G.
Mingione
and
V.
Brandi
,
Journal of Aircraft
35
(
2
),
240
246
(
1998
).
14.
H.
Beaugendre
,
F.
Morency
and
W. G.
Habashi
ICE 3D, FENSAP-ICE’S 3D In-Flight Ice Accretion Module
”, in
American Institute of Aeronautics and Astronautics, 40th Aero-space Sciences Meeting & Exhibit
(
Reno, NV
,
2002
)
AIAA Paper
No.
0385
,
20
p.
15.
C. N.
Aliaga
,
M. S.
Aubé
,
G. S.
Baruzzi
and
W. G.
Habashi
,
Journal of Aircraft
48
(
1
),
119
126
(
2011
).
16.
J. E.
Dillingh
and
H. W. M.
Hoeijmakers
, “
Accumulation of ice accretion on airfoils during flight
”, in
Federal Aviation Administration In-flight Icing and Aircraft Ground De-icing Conference
(
Chicago, Illinois
,
2003
)
13
p.
17.
J.
Hospers
and
H. W. M.
Hoeijmakers
, “
Numerical Simulation of SLD Ice Accretions
”, in
Proceedings SAE 2011 (online)
(
Chicago, USA
,
2011
), pp.
1
18
.
18.
D.
Pena
,
Y.
Haorau
and
E.
Laurendeau
,
Journal of Fluids and Structures
65
,
278
294
(
2016
).
19.
A.
AL-Kebsi
,
D.
Pena
,
E.
Laurendeau
,
R.
Mose
and
Y.
Hoarau
, “
Multi-Step Level-Set Ice Accretion Simulation with the NSMB solver
”, in
23ème Congrès Français de Mécanique
(
Lille
,
2017
),
14
p.
20.
S.
Bourgault-Côté
, “
Simulation du givrage sur ailes en flèche par methods RANS/eulérienne quasi stationnaires
”, Master thesis,
École Polytechnique de Montréal
,
2015
.
21.
S.
Bourgault-Côté
,
S.
Ghasemi
,
A.
Mosahebi
, and
E.
Laurendeau
,
AIAA Journal
55
(
2
),
662
667
(
2017
).
22.
A. A.
Aksenov
,
Computer Research and Simulation
9
(
1
),
5
20
(
2017
). (in Russian)
23.
S. V.
Zhluktov
and
A. A.
Aksenov
,
Computer Research and Simulation
(in Russian)
7
(
6
),
1221
1239
(
2015
).
24.
S. V.
Zhluktov
,
A. A.
Aksenov
and
D. V.
Savitskiy
,
Computer Research and Simulation
10
(
4
),
461
481
(
2018
). (in Russian)
25.
C.
Crowe
,
M.
Sommerfeld
and
Yu.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press LLC
,
1998
),
471
p.
26.
B.
Abramzon
and
W. A.
Sirignano
,
Int. J. of Heat and Mass Transfer
32
(
9
),
1605
1618
(
1989
).
27.
S. V.
Alekseenko
and
A. A.
Prihod’ko
,
Proceedings of TsAGI
XLIV
(
6
),
25
57
(
2013
). (in Russian)
This content is only available via PDF.
You do not currently have access to this content.