The aim of this paper is to develop a framework for a unitary approach in a nonuniform setting for various concepts of dichotomy for skew-evolution semiflows on infinite dimensional spaces. The techniques that describe the stability and instability in infinite dimensional spaces are improved to characterize the property of dichotomy. Beside the classic concepts of uniform exponential dichotomy and exponential dichotomy, we propose also the notions of Barreira-Valls exponential dichotomy and (h, k)–dichotomy. Connections between notions are pointed out, several examples and counter examples underlining the statements.
REFERENCES
1.
J. L.
Daleckii
and M. G.
Krein
, Stability of Solutions of Differential Equations in Banach Spaces
, Vol. 43
(Translations of Mathematical Monographs
, Amer. Math. Soc.
, 1974
).2.
O.
Perron
, Math. Z.
32
, 703
–728
(1930
).3.
S. N.
Chow
and H.
Leiva
, J. Differential Equations
120
, 429
–477
(1995
).4.
W. A.
Coppel
, Dichotomies in Stability Theory
, Vol. 629
(Springer-Verlag
, Berlin-New York
, 1978
).5.
Y.
Latushkin
and R.
Schnaubelt
, J. Differential Equations
159
, 321
–369
(1999
).6.
J. L.
Massera
and J. J.
Schäffer
, Linear Differential Equations and Function Spaces
, Vol. 21
(Pure Appl. Math., 1966
).7.
R.
Naulin
and M.
Pinto
, J. Differential Equations
118
, 20
–35
(1995
).8.
M.
Pinto
, J. Math. Anal. Appl.
195
, 16
–31
(1995
).9.
M.
Pinto
, Nonlinear Anal.
72
, 1227
–1234
(2010
).10.
11.
A. J. G.
Bento
and C. M.
Silva
, Bull. Sci. Math.
138
, 89
–109
(2014
).12.
P. V.
Hai
, Nonlinear Anal.
72
, 4390
–4396
(2010
).13.
P. V.
Hai
, Appl. Anal.
90
, 1897
–1907
(2011
).14.
T.
Yue
, X. Q.
Song
, and D. Q.
Li
, J. Inequal. Appl.
DOI: , 1
–6
(2014
).15.
C.
Stoica
and M.
Megan
, Nonlinear Anal.
72
, 1305
–1313
(2010
).16.
L.
Barreira
and C.
Valls
, Stability of nonautonomous differential equations
, Vol. 1926
(Springer-Verlag
, Berlin
, 2008
).17.
18.
C.
Stoica
, Math. Probl. Eng.
Article ID 4790679, 1
–8
(2017
).19.
C.
Stoica
, Uniform Asymptotic Behaviors for Skew-evolution Semiflows on Banach Spaces
(Mirton Publishing House
, Timişoara
, 2010
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.