Numerical modeling is currently widely used in all branches of medicine. In this paper a numerical model of the biomechanical response of bone - dental implant system to masticatory loading is presented. The geometrical model is accurately created and used to calculate the state of stress in bone tissue and dental implant by finite element method. Different types of loadings due to masticatory forces are taken into account and emphasized their influences. The results obtained by the numerical model developed and presented herein are in good agreement with clinical observations and other results from literature.
REFERENCES
1.
Bahuguna
, R.
, Anand
, B.
, Kumar
, D.
, Aeran
, H.
, Anand
, V.
, Gulati
, M.
, Evaluation of stress models in bone around dental implant for different blunt angulations under axial&oblique loading:A FEA
. Natl J Maxillofac Surg
, 2013
. 4
(1
): p. 46
–51
.2.
Cicciu
, M.
, Bramanti
, E.
, Cecchetti
, F.
, Scappaticci
, L.
, Guglielmino
, E.
, Risitano
, G.
, FEM and Von Mises analyses of different dental implant shapes for masticatory loading distribution.
Oral Implantol (Rome)
, 2014
. 7
(1
): p. 1
–10
.3.
Gujjarlapudi
, MC
, Narayana Venkata
Nunna
, Sanjay Dutt
Manne
, Varalakshmi Reddy
Sarikonda
,Praveen Kumar
Madineni
, and Reddi Narasimha Rao
Meruva
, Predicting Peri-implant Stresses Around Titanium and Zirconium Dental Implants-A FEA.
J Indian Prosthodont Soc
, 2013
. 13
(3
): p 196
–204
.4.
Keyak
, J.H
,, Rossi
, S.A.
, Prediction of FEM oral fracture load using finite element models: an examination of stress- and strain-based failure theories.
Journal of biomechanics
, 2000
. 33
(2
): p. 209
–214
.5.
Desai
, S.R.
, Desai
, M.S.
, Katti
, G
, Karthikeyan
, I.
, Evaluation of design parameters of eight dental implant designs: a two-dimensional finite element analysis.
Niger J Clin Pract
, 2012
. 15
(2
): p. 176
–81
.6.
Lee
, J.S.
, Cho
, I.H.
, Kim
, Y.S.
, Heo
, S.J.
, Kwon
, H.B.
, Lim
, Y.J.
, Bone-implant interface with simulated insertion stress around an immediately loaded dental implant in the anterior maxilla: a three-dimensional FEA.
Int J Oral Maxillofac Implants
, 2012
. 27
(2
): p. 295
–302
.7.
Aversa
. R.
, Apicella
, D.
, Perillo
, L.
, Sorrentino
, R.
, Zarone
, F.
, Ferrari
, M.
, Apicella
, A.
, Non-linear elastic 3D FEA on the effect of endocrown material rigidity on alveolar bone remodeling processs.
Dental Materials
, 2009
. 25
(5
):p. 678
–690
.8.
Huang
, Y.M.
, Chou
, I.C.
, Jiang
, C.P.
, Wu
, Y.S.
, Lee
, S.Y.
, Finite element analysis of dental implant neck effects on primary stability and osseointegration in a type IV bone mandible.
Biomed Mater Eng
, 2014
. 24
(1
), p 1407
–15
.9.
Vanegas-Acosta
, J.C.
, Landinez
, P.N.
, Garzon-Alvarado
, D.A.
, Casale
, R.M.
, A FEM approach for the mechanobiological modeling of the osseointegration of a dental implant.
Comput Meth Progr Biomed
, 2011
. 101
(3
): p 297
–314
.10.
Ormianer
. Z.
, Palti
, A.
, Demiralp
, B.
, Heller
, G.
, Lewinstein
, I.
, Khayat
, P.G.
, Implant-supported first molar restorations: correlation of FEA with clinical outcomes
. Int J Oral Maxillofac Implants
, 2012
. 27
(1
): p. 1
–12
.11.
Roateşi
, I.
, Biomaterials for dental implants.
Romanian Journal of Materials 2015.
45
(3
): p. 282
–289
.12.
Roateşi
, I.
, Roateşi
, S.
Numerical FEM Modeling in Dental Implantology
. American Institute of Physics (AIP)
, 2016
. Proceedings 1738
: 35000
; .13.
Dee
, K.C.
, Puleo
, D.A.
, Bizios
, R.
, An Introd To Tissue-Biomat Interactions. Wiley-Liss, John Wiley&Sons,Inc, Publ
, 2002
.14.
15.
Chang
, C.L.
, Chen
, C.S.
, Yeun
, T.C.
, Hsu
, M.L.
, Biomechanical effect of a zirconia dental implant-crown system: a three-dimensional finite element analysis
. Int J Oral Maxillofac Implants
, 2012
. 27
(4
): p. 49
–57
.16.
Zheng
, L.
, Yang
, J.
, Hu
, X.
, Luo
, J.
, Three dimensional finite element analysis of a novel osteointegrated dental implant designed to reduce stress peak of cortical bone
. Acta Bioeng Biomech
, 2014
. 16
(3
): p. 21
–8
.17.
Roateşi
, I.
, Finite Elements Method in Implant Prosthetics
, Ch. 10, Perusal of the Finite Element Method, InTechOpen, INTECH
, 2017
, p. 229
–262
, .18.
Garcia
, D.
, Zysset
, P.K.
, Charlebois
, M.
, Curnier
, A.
A three-dimensional elastic plastic damage constitutive law for bone tissue
. Biomech Model Mechanobiol.
2009
. 8
, p. 149
–165
.19.
De Vasconcellos
, L.G.O.
, Nishioka
, R.S.
, De Vasconcellos
, L.M.R.
and Nishioka
L.N.B.M
., EFFECT OF AXIAL LOADS ON IMPLANT-SUPPORTED PARTIAL FIXED PROSTHESES BY STRAIN GAUGE ANALYSIS
. J APPL ORAL SCI.
2011
. 19
(6
): p. 610
–615
.20.
Hecker
, D.M.
, Eckert
, S.E.
, Choi
, Y.G.
, CYCLIC LOADING OF IMPLANT-SUPPORTED PROSTHESES: COMPARISON OF GAPS AT THE PROSTHETIC-ABUTMENT INTERFACE WHEN CYCLED ABUTMENTS ARE REPLACED WITH AS-MANUFACTURED ABUTMENTS
. J PROSTHET DENT.
2006
. 95
(1
): p. 26
–32
.21.
Hoyer
, S.A.
, Stanford
, C.M.
, Buranadham
, S.
, Fridrich
, T.
, Wagner
, J.
, Gratton
, D.
, Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex-type implants
. J Prosthet Dent.
2001
. 85
(6
): p. 599
–607
.
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.