In this work, DG schemes on Gauss and Gauss-Lobatto nodes, representatives of the class of summation-by-parts (SBP) schemes are investigated. With the increasing desire to discretize split-form equations, SBP space discretizations have gained increasing popularity since they mimick integration by parts. SBP schemes on Gauss nodes require correction terms on the element boundary fluxes. Hence, these nodes are less frequently used. However, they yield quadrature rules of higher degree of exactness. To gain additional insight into the impact on accuracy, we carry out a comparative Fourier type analysis for advection-diffusion equations using Gauss and Gauss-Lobatto DG schemes with three different viscous flux discretizations.

1.
S.
Ortleb
,
J. Sci. Comput.
71
,
1135
1168
(
2017
).
2.
D. C. Del Rey
Fernández
,
P. D.
Boom
, and
D. W.
Zingg
,
J. Comput. Phys.
266
,
214
239 June
(
2014
).
3.
D. A.
Kopriva
and
G. J.
Gassner
,
J. Sci. Comput.
44
,
136
155
(
2010
).
4.
G. J.
Gassner
and
D. A.
Kopriva
,
SIAM J. Sci. Comput.
33
,
2560
2579
(
2011
).
5.
F.
Bassi
,
N.
Franchina
,
A.
Ghidoni
, and
S.
Rebay
,
International Journal for Numerical Methods in Fluids
71
,
1322
1339
(
2013
).
6.
G. J.
Gassner
,
Int. J. Numer. Meth. Fluids
76
,
28
50
(
2014
).
7.
F.
Bassi
and
S.
Rebay
,
Int. J. Numer. Meth. Fluids
40
,
197
207
(
2002
).
8.
M.
Zhang
and
C. W.
Shu
,
Math. Models Meth. Appl. Sci.
13
,
395
413
(
2003
).
9.
W.
Guo
,
X.
Zhong
, and
J. M.
Qiu
,
J. Comput. Phys.
235
,
458
485
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.