This contribution deals with the numerical realization of the Stokes system involving the local Coulomb slip boundary conditions. The algebraic formulation arising from a finite element approximation leads to a non-smooth system of algebraic equations which is solved by the semi-smooth Newton method using the active/inactive set strategy. Results of a model example are presented.

1.
D.
Arnold
,
F.
Brezzi
,
M.
Fortin
,
A stable finite element for the Stokes equations
,
Calcolo
,
21
(
1984
),
337
344
.
2.
IT4Innovations Documentation
: “
National Supercomputing Center, VŠB - Technical University of Ostrava, Salomon Cluster Documentation
”. At: https://docs.it4i.cz/salomon/introduction.
3.
J.
Haslinger
,
R.
Kučera
,
V.
Šátek
,
Stokes system with local Coulombs slip boundary conditions: Analysis of discretized models and implementation
,
Computers and Mathematics with Applications
, (
2018
), doi: .
4.
M.
Hintermüller
and
K.
Ito
and
K.
Kunisch
,
The primal-dual active set strategy as a semismooth Newton method
,
SIAM J. Optim.
,
13
(
2013
),
865
888
.
5.
J.
Koko
,
Vectorized Matlab codes for the Stokes problem with P1-bubble/P1 finite element, At
: http://www.isima.fr/jkoko/Codes.html [online], (
2012
).
6.
R.
Kučera
,
J.
Machalová
,
H.
Netuka
,
P.
Ženčák
,
An interior point algorithm for the minimization arising from 3D contact problems with friction
,
Optim. Method Softw.
,
28
,
6
(
2013
),
1195
1217
.
This content is only available via PDF.
You do not currently have access to this content.