Rechargeable metal-air batteries have come up with high theoretical energy density as compared to existing lithium and sodium ion batteries. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the two processes, related to water splitting, over which metal-air batteries run. Since both processes are sluggish, hence, they require a catalyst and since the existing precious-metal based catalysts are selective and expensive, there is a need to find a suitable bifunctional catalyst for the same. Motivated by enhanced structural stability imparted by the polyanionic groups along with many reports on electrocatalytic activity of Cobalt phosphate based materials, we tried to look into the electrocatalytic behavior of Na2CoPO4F and Na4Co3(PO4)2P2O7. Both materials were synthesized via solution combustion route resulting in carbon coated and amorphous particles. The ORR/OER properties of the materials were studied in alkaline solution showing bifunctional behavior. An onset potential of 0.854 V and 0.771 V vs. RHE was observed for Na2CoPO4F and Na4Co3(PO4)2P2O7 with a current density of 5.84 mA cm−2 and 3.4 mA cm−2 respectively. The onset potential during OER was observed to be 1.591 V and 1.596 V vs. RHE for Na2CoPO4F and Na4Co3(PO4)2P2O7 respectively. As an application, aqueous Na-air battery was fabricated using Na2CoPO4F as an air-cathode showing good (dis)charge behavior.

1.
J. W. D.
Ng
,
M.
Tang
and
T. F.
Jaramillo
,
Energy Environ. Sci.
7
,
2017
2024
(
2014
).
2.
B.
Senthilkumar
,
Z.
Khan
,
S.
Park
,
I.
Seo
,
H.
Ko
and
Y.
Kim
,
J. Power Sources
311
,
29
34
(
2016
).
3.
G. L.
Chai
,
K.
Qiu
,
M.
Qiao
,
M. M.
Titirici
,
C.
Shang
and
Z.
Guo
,
Energy Environ. Sci.
10
,
1186
1195
(
2017
)
4.
H.
Kim
,
J.
Park
,
I.
Park
,
K.
Jin
,
S. E.
Jerng
,
S. H.
Kim
,
K. T.
Nam
and
K.
Kang
,
Nat. Commun.
6
,
8253
8263
(
2015
).
5.
R.
Gond
,
K.
Sada
,
B.
Senthilkumar
and
P.
Barpanda
,
Chemelectrochem
5
,
153
158
(
2018
).
6.
T.
Zhou
,
Y.
Du
,
S.
Yin
,
X.
Tian
,
H.
Yang
,
X.
Wang
,
B.
Liu
,
H.
Zheng
,
S.
Qiao
and
R.
Xu
,
Energy Environ. Sci.
9
,
2563
2570
(
2016
).
7.
K.
Kubota
,
K.
Yokoh
,
N.
Yabuuchi
and
S.
Komaba
,
Electrochem.
82
,
909
911
(
2014
).
8.
H.
Zou
,
S.
Li
,
X.
Wu
,
M. J.
McDonald
and
Y.
Yang
,
ECS Electrochem. Lett.
4
,
A53
A55
(
2015
).
9.
X.
Wu
,
G.
Zhong
and
Y.
Yang
,
J. Power Sources
327
,
666
674
(
2016
).
10.
L.
Sharma
,
P. K.
Nayak
,
E. D. L.
Llave
,
H.
Chen
,
S.
Adams
,
D.
Aurbach
and
P.
Barpanda
,
ACS Appl. Mater. Interfaces
9
,
34961
34969
(
2017
).
11.
K.
Hayashi
,
K.
Shima
and
F.
Sugiyama
,
J. Electrochem. Soc.
160
,
A1467
A1472
(
2013
).
12.
F.
Liang
and
K.
Hayashi
,
J. Electrochem. Soc.
162
,
A1215
A1219
(
2015
).
13.
T.
Hashimoto
and
K.
Hayashi
,
Electrochim. Acta
182
,
809
814
(
2015
).
14.
S. H.
Sahgong
,
S. T.
Senthilkumar
,
K.
Kim
,
S. M.
Hwang
and
Y.
Kim
,
Electrochem. Commun.
61
,
53
56
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.