In last one decade, there have been a resurgence in interest followed by a rigorous research in sodium-ion intercalation chemistry for rechargeable battery application. Though lithium-ion chemistry has been a commercial success and is a lynchpin of the portable electronics era, sodium-ion chemistry can economically address the large-scale stationary rechargeable battery market and offers the exciting avenues of novel intercalation structures, some of which may not exist in their lithium equivalents. To realize the commercially viable large-scale Na-based batteries, the concept of earth abundance should consistently be applied throughout their design. Of significance, compounds constituting Na-Fe-S-O type elements show promising results. In this line, alluaudite structured Na2Fe2(SO4)3 has been reported benchmarking the highest Fe3+/Fe2+ redox potential at 3.8 V (vs. Na) with excellent rate capability and competent energy density. In pursuit of energy-savvy synthesis of this sulfate cathode, this work reports two aqueous based synthesis namely Pechini and spray dry routes. Further, various other Na-Fe-S-O quaternary cathodes along the Na2SO4 and FeSO4 binary phase line and their possible phase transformation have been studied in detail.

1.
V.
Palomares
,
M.
Casas-Cabanas
,
E.
Castillo-Martínez
,
M. H.
Han
and
T.
Rojo
,
Energy Environ. Sci.
6
,
2312
2337
(
2013
).
2.
N.
Yabuuchi
,
H.
Yoshida
and
S.
Komaba
,
Electrochemistry
80
,
716
719
(
2012
).
3.
N.
Yabuuchi
,
M.
Kajiyama
,
J.
Iwatate
,
H.
Nishikawa
,
S.
Hitomi
,
R.
Okuyama
,
R.
Usui
,
Y.
Yamada
and
S.
Komaba
,
Nat. Mater.
11
,
512
517
(
2012
).
4.
K.
Zaghib
,
J.
Trottier
,
P.
Hovington
,
F.
Brochu
,
A.
Guerfi
,
A.
Mauger
and
C.
Julien
,
J. Power Sources
196
,
9612
9617
(
2011
).
5.
P.
Moreau
,
D.
Guyomard
,
J.
Gaubicher
and
F.
Boucher
,
Chem. Mater.
22
,
4126
4128
(
2010
).
6.
K.
Trad
,
D.
Carlier
,
L.
Croguennec
,
A.
Wattaiaux
,
M.
Ben Amara
,
C.
Delmas
,
Inorg. Chem.
49
,
10378
10389
(
2010
).
7.
P.
Barpanda
,
G.
Liu
,
C. D.
Ling
,
M.
Tamaru
,
M.
Avdeev
,
S. C.
Chung
,
Y.
Yamada
and
A.
Yamada
,
Chem. Mater.
25
,
3480
3487
(
2010
).
8.
H.
Kim
,
I.
Park
,
S.
Lee
,
H.
Kim
,
K. Y.
Park
,
Y. U.
Park
,
H.
Kim
,
J.
Kim
,
H. D.
Lim
,
W. S.
Yoon
and
K.
Kang
,
Chem. Mater.
25
,
3614
3622
(
2013
).
9.
A. K.
Padhi
,
V.
Manivannan
,
J. B.
Goodenough
,
J. Electrochem. Soc.
,
145
,
1518
1520
(
1998
).
10.
P.
Barpanda
,
G.
Oyama
 et al,
A.
Yamada
,
Nature Commun.
5
,
4358
(
2014
).
11.
D.
Dwibedi
,
R. B.
Araujo
,
S.
Chakraborty
,
P. P.
Shanbogh
,
N. G.
Sundaram
,
R.
Ahuja
,
P.
Barpanda
,
J. Mater. Chem. A
3
,
18564
18571
(
2015
).
12.
D.
Dwibedi
,
R.
Gond
,
A.
Dayamani
,
R. B.
Araujo
,
S.
Chakraborty
,
R.
Ahuja
,
P.
Barpanda
,
Dalton Trans.
46
,
55
63
(
2017
).
13.
D.
Dwibedi
,
C. D
Ling
,
R. B
Araujo
,
S.
Chakraborty
,
S.
Duraisamy
,
N
Munichandraiah
,
R.
Ahuja
,
P.
Barpanda
,
ACS Appl. Mater. Interfaces
8
,
6982
6991
(
2016
).
14.
D.
Dwibedi
,
S.
Baskar
and
P.
Barpanda
,
ECS Trans.
80
,
337
342
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.