An in-depth understanding of material flow behaviour is crucial for numerical simulation of plastic deformation processes. In present work, we use a Symbolic Regression method in combination with Genetic Programming for modelling flow stress curves. In contrast to classical regression methods that fit parameters to an equation of a given form, symbolic regression searches for both numerical parameters and the equation form simultaneously; therefore, no prior assumption on a flow model is required. This identification process is done by generating and adapting equations iteratively using a genetic algorithm. The constitutive model is derived for two aluminium wrought alloys: a conventional AA6082 and modified Cu-containing AA7000 alloy. The required dataset is created by performing a series of hot compression tests at temperatures between 350 °C and 500 °C and strain rates from 10−3 to 10 s−1 using a deformation dilatometer. The measured data, experimental set-up parameters as well as the material process history and its chemical composition are stored in a SQL database using a python script. To correct raw measured data, e.g. minimize the noise, an in-house Flow Stress Analysis Toolkit was used. The obtained results represent a data-driven free-form constitutive model and are compared to a physics-based model, which describes the flow stress in terms of internal state parameters (herein, mean dislocation density). We find that both models reproduce reasonably well the measured data, while for modeling using symbolic regression no prior knowledge on materials behavior was required.

1.
D.
Helm
,
A.
Butz
,
D.
Raabe
, and
P.
Gumbsch
,
JOM
63
4
,
26
33
(
2011
).
2.
H.K.D.H.
Bhadeshia
,
ISIJ Int.
39
10
,
966
979
(
1999
).
3.
D.
Solomatine
,
L.M
See
,
R.J.
Abrahart
. “Chapter 2 Data-driven modelling: concepts, approaches and experiences”, in
Practical Hydroinformatics
, edited by
R. J.
Abrahart
, et al
, (
Water Science and Technology Library
68
, ©
Springer-Verlag Berlin Heidelberg
,
2008
), pp.
17
30
.
4.
J.
Hill
,
G.
Mulhoard
,
K.
Persson
,
R.
Seshadri
,
C.
Wolverton
,
B.
Meredig
.
Materials science with large-sclae data and informatics: unlocking new opportunities
,
MRS Bull.
41
,
399
409
(
2016
).
5.
J.G.
Lenard
,
M.
Pietrzyk
,
L.
Cser
.
Mathematical and Physical Simulation of the Properties of Hot Rolled Products
(
Elsevier Science Ltd.
,
Oxford, UK
,
1999
), pp.
279
319
.
6.
T.
Hastie
,
R.
Tibshirani
,
J.
Friedman
,
The Elements of Statistical Learning: Data Mining
,
Inference, and Prediction
, Second Edition,
2009
7.
H.
Sheikh
,
S.
Serajzadeh
,
J. Mater. Process. Technol.
198
,
115
119
(
2008
).
8.
Z.
Lu
,
Q.
Pan
,
X.
Liu
,
Y.
Qin
,
Y.
He
,
S.
Cao
,
Mech. Res. Commun.
38
,
192
197
(
2011
).
9.
N.
Haghdadi
,
A.
Zarei-Hanzaki
,
A.R.
Khalesian
,
H.R.
Abedi
,
Mater. Des.
49
,
386
391
(
2013
).
10.
R.
Bobbili
,
B.
Ramakrishna
,
V.
Madhu
,
A.K.
Gogia
.
Def. Technol.
11
,
93
98
(
2015
).
11.
M.
Shakiba
,
N.
Parson
,
X.G.
Chen
,
Materials
9
,
536
(
2016
).
12.
C.
Bruni
,
A.
Forcellese
,
F.
Gabrielli
,
M.
Simoncini
,
J. Mater. Process. Technol.
177
,
323
326
(
2006
).
13.
S.
Pal
,
G.W.
Wathugala
,
S.
Kundu
,
Comput. Geotech.
19
4
,
325
348
(
1996
).
14.
D. E.
Goldberg
, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley
,
1989
15.
J.R.
Koza
. Genetic Programming: Vol. 1, On the Programming of Computers by Means of Natural Selection (
MIT Press
,
1992
).
16.
K.
Sastry
,
D.D.
Johnson
,
D.
Goldberg
,
P.
Bellon
,
Int. J. Multiscale Comput. Eng.
2
2
,
239
256
(
2004
).
17.
D.
Versino
,
A.
Tonda
,
C.A.
Bronkhorst
,
Comput. Methods Appl. Mech. Engrg.
318
,
981
1004
(
2017
).
18.
E.J.
Vladislavleva
,
G.F.
Smith
,
D.
den Hertog
,
IEEE Trans. Evol. Comput.
13
2
,
333
349
(
2009
).
19.
P.
Sherstnev
,
P.
Lang
,
E.
Kozeschnik
, “
Treatment of simultaneous deformation and solid-state precipitation in thermo-kinetic calculations
” in
ECCOMAS Proceedings
(
2012
), pp.
5331
5338
20.
E.
Kabliman
,
P.
Sherstnev
,
Mat. Sci. For.
765
,
429
433
(
2013
).
21.
E.
Kabliman
,
P.
Sherstnev
,
J.
Kronsteiner
and
T.
Ebner
, „Physikalisch basierte Simulation des Rekristallisationsverhaltens in einer Al-Cu-Mg-Mn Legierung während der Warmumformung und anschließender Wärmebehandlung“, Tagungsband der 8. Ranshofener Leichtmetalltage, edited by
C. M.
Chimani
, et al
, pp.
50
60
.
22.
J.
Kreyca
,
E.
Kozeschnik
,
Int. J. Plast.
103
,
67
80
(
2018
).
23.
U.F.
Kocks
,
ASME J. Eng. Mat. Techn.
98
,
76
85
(
1976
).
24.
H.
Mecking
,
U.F.
Kocks
,
Acta Metall.
29
,
1865
1875
(
1981
).
25.
26.
R.
Poli
,
W.B
Langdon
,
N. F.
McPhee
,
J. R.
Koza
,
A Field Guide to Genetic Programming
, March
2008
.
27.
https://dev.heuristiclab.com/ (last accessed: 14/11/2018).
This content is only available via PDF.
You do not currently have access to this content.