For the precise description of plastic deformation behaviour of metallic materials in various forming processes, the accuracy of the applied constitutive model is of essential importance. It is well known that the mechanical properties of commonly used constructional materials, such as steels, aluminium alloys, are affected by several factors, temperature, strain rate, and loading orientation. However, a constitutive model considering all these involved phenomena with high accuracy is still missing. In this study, a comprehensive experimental program is designed to investigate the effects of anisotropy and temperature on the mechanical properties of a high-strength steel. The anisotropic flow behaviour of the investigated material is characterised by performing uniaxial tensile tests along three different directions with respect to the rolling direction. The thermal dependence of the mechanical properties, especially the flow stresses, is revealed by repeating uniaxial tensile tests along three directions over a wide range of temperatures, within which a special phenomenon called the dynamic strain ageing takes place. The mutual effects of the temperature and anisotropy on the plasticity are discussed. A phenomenological constitutive plasticity model is proposed to describe the anisotropic flow behaviour of the investigated material considering the complicated thermal effects over a wide range of temperatures.

1.
R.
Hill
,
Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences
193
(
1033
),
281
297
(
1948
).
2.
F.
Barlat
,
J. C.
Brem
,
J. W.
Yoon
,
K.
Chung
,
R. E.
Dick
,
D. J.
Lege
,
F.
Pourgoghrat
,
S. H.
Choi
and
E.
Chu
,
Int. J. Plasticity
19
(
9
),
1297
1319
(
2003
).
3.
F.
Barlat
,
H.
Aretz
,
J. W.
Yoon
,
M. E.
Karabin
,
J. C.
Brem
and
R. E.
Dick
,
Int. J. Plasticity
21
(
5
),
1009
1039
(
2005
).
4.
D.
Banabic
,
H.
Aretz
,
D. S.
Comsa
and
L.
Paraianu
,
Int. J. Plasticity
21
(
3
),
493
512
(
2005
).
5.
T. B.
Stoughton
and
J. W.
Yoon
,
Int. J. Plasticity
25
(
9
),
1777
1817
(
2009
).
6.
T. B.
Stoughton
,
Int J Plasticity
18
(
5
),
687
714
(
2002
).
7.
J.
Lian
,
F.
Shen
,
W.
Liu
and
S.
Münstermann
,
AIP Conference Proceedings
1960
(
1
),
150008
(
2018
).
8.
J.
Lian
,
F.
Shen
and
S.
Münstermann
,
J. Phys. Conf. Ser.
1063
(
2018
).
9.
J.
Lian
,
F.
Shen
,
X.
Jia
,
D.-C.
Ahn
,
D.-C.
Chae
,
S.
Münstermann
and
W.
Bleck
,
Int. J. Solids Struct.
151
,
20
44
(
2018
).
10.
F.
Shen
,
J.
Lian
and
S.
Münstermann
,
AIP Conference Proceedings
1960
(
1
),
150013
(
2018
).
11.
R. R. U.
Queiroz
,
F. G. G.
Cunha
and
B. M.
Gonzalez
,
Mater. Sci. Eng., A
543
,
84
87
(
2012
).
12.
J. L.
Chaboche
,
Int. J. Plasticity
24
(
10
),
1642
1693
(
2008
).
13.
A. S.
Khan
and
R.
Liang
,
Int. J. Plasticity
15
(
10
),
1089
1109
(
1999
).
14.
T.
Mirzaie
,
H.
Mirzadeh
and
J.-M.
Cabrera
,
Mech. Mater.
94
,
38
45
(
2016
).
15.
D.
Novokshanov
,
B.
Dobereiner
,
M.
Sharaf
,
S.
Münstermann
and
J.
Lian
,
Eng. Fract. Mech.
148
,
281
303
(
2015
).
16.
Y.
Di
,
J.
Lian
,
B.
Wu
,
N.
Vajragupta
,
D.
Novokshanov
,
V.
Brinnel
,
B.
Döbereiner
,
M.
Könemann
and
S.
Münstermann
,
Int. J. Fract.
198
(
1
),
149
165
(
2016
).
17.
J.
Wang
,
W.-G.
Guo
,
X.
Gao
and
J.
Su
,
Int. J. Plasticity
65
,
85
107
(
2015
).
18.
F.
Yang
,
H.
Luo
,
E.
Pu
,
S.
Zhang
and
H.
Dong
,
Int. J. Plasticity
103
,
188
202
(
2018
).
19.
F.
Shen
,
J.
Lian
,
S.
Münstermann
,
V.
Kokotin
and
T.
Pretorius
,
Procedia Structural Integrity
13
,
1312
1317
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.