For biaxial stretching strain paths, which are typically encountered in sheet metal forming, the stress triaxiality ranges from 0.33 to 0.67. At this low level of triaxiality, voids change their shape from spherical to general spheroidal shape. In the literature, unit cell studies show the dependency of void shape on the lode parameter, especially at low stress triaxiality. Several authors also pointed out the influence of lode parameter on ductile failure. In the current study, lode parameter dependent Gurson-based models are combined with bifurcation analysis for the prediction of formability limits of TRIP780 steel sheet. Moreover, Thomason’s coalescence criterion is considered for the prediction of critical porosity. For the anisotropic plastic behavior of the dense material, the quadratic Hill’48 yield surface is considered. Contribution to porosity evolution due to shear mechanism is also analyzed. In addition, the effect of lode parameter on the prediction of forming limit diagram (FLD) is investigated. It is observed that the accelerated evolution of porosity, due to the consideration of lode parameter, induces lower ductility limits for the modified Gurson-based model, as compared to the original Gurson model. The results also demonstrate that the use of the Thomason coalescence criterion for the determination of critical porosity plays an important role in the prediction of FLDs, as compared to fixed critical porosity used in the Gurson–Tvergaard–Needleman model.

1.
J.W.
Rudnicki
and
J.R.
Rice
,
J. Mech. Phys. Solids
23
,
371
394
(
1975
).
2.
J.R.
Rice
, (
1976
). The localization of plastic deformation. In:
Koiter
(Ed.),
Theoretical and Applied Mechanics
, pp.
207
227
.
3.
A.L.
Gurson
,
ASME J. Eng. Mater. Technol.
99
(
1
),
2
15
(
1977
).
4.
C.C.
Chu
and
A.
Needleman
,
ASME J. Eng. Mater. Technol.
102
(
3
),
249
256
(
1980
).
5.
V.
Tvergaard
and
A.
Needleman
,
Acta Metall.
32
(
1
),
157
169
(
1984
).
6.
P.F.
Thomason
,
Acta Metall.
33
(
6
),
1087
1095
(
1985
).
7.
K.
Madou
and
J.B.
Leblond
,
J. Mech. Phys. Solids
60
(
5
),
1020
1036
(
2012
).
8.
L.
Morin
,
J.C.
Michel
and
J.B.
Leblond
,
Int. J. Solids Struct.
118
,
167
178
(
2017
).
9.
M.E.
Torki
,
C.
Tekog̃lu
,
J.B.
Leblond
and
A.A
Benzerga
,
Int. J. Plasticity
91
,
160
181
(
2017
).
10.
J.
Jackiewicz
,
Eng. Fract. Mech.
78
(
3
),
487
502
(
2011
).
11.
X.
Gao
and
J.
Kim
,
Int. J. Solids Struct.
43
(
20
),
6277
6293
(
2006
).
12.
L.E.
Dæhli
,
D.
Morin
,
T.
Børvik
and
O.S.
Hopperstad
,
Eng. Fract. Mech.
190
,
299
318
(
2018
).
13.
I.
Barsoum
and
J.
Faleskog
,
Int. J. Solids Struct.
44
(
6
),
1768
1786
(
2007
).
14.
M.
Dunand
and
D.
Mohr
,
J. Mech. Phys. Solids
66
,
133
153
(
2014
).
15.
R.
Kiran
and
K.
Khandelwal
,
Eng. Fract. Mech.
128
,
121
138
(
2014
).
16.
Y.
Zhu
,
M.D.
Engelhardt
and
R.
Kiran
,
Eng. Fract. Mech.
199
,
410
437
(
2018
).
17.
Y.S.
Ma
,
D.Z.
Sun
,
F.
Andrieux
and
K.S.
Zhang
,
Acta Mech. Solida Sin.
30
(
5
),
493
506
(
2017
).
18.
K.
Nahshon
and
J.W.
Hutchinson
,
Eur. J. Mech. A. Solids
27
(
1
),
1
17
(
2008
).
19.
K.L.
Nielsen
and
V.
Tvergaard
,
Eng. Fract. Mech.
77
(
7
),
1031
1047
(
2010
).
20.
F.
Abed-Meraim
,
T.
Balan
and
G.
Altmeyer
,
Int. J. Adv. Manuf. Tech
71
(
5-8
),
1247
1262
(
2014
).
21.
V.
Tvergaard
,
J. Mech. Phys. Solids
35
(
1
),
43
60
(
1987
).
22.
R.
Hill
,
Proc. R. Soc. Lond. A
193
(
1033
),
281
297
(
1948
).
23.
L.Z.
Mansouri
,
H.
Chalal
and
F.
Abed-Meraim
,
Mech. Mater.
76
,
64
92
(
2014
).
24.
M.
Dunand
and
D.
Mohr
,
J. Mech. Phys. Solids
59
(
7
),
1374
1394
(
2011
).
25.
D.
Mohr
,
M.
Dunand
and
K.H.
Kim
,
Int. J. Plasticity
26
(
7
),
939
956
(
2010
).
26.
S.
Panich
,
F.
Barlat
,
V.
Uthaisangsuk
,
S.
Suranuntchai
and
S.
Jirathearanat
,
Mater. Design
51
,
756
766
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.