High throughput experimentation is recognized as a new scientific approach to generate knowledge and to identify new material compositions. Rapid material development involves not only fast processing of new material compositions, but also fast material characterization. These experimental methods do not aim to understand the mechanisms of new material compositions. Instead, these methods offer descriptor values, which can be connected to material properties by means of mathematical models. In this paper, a material test method is presented, which comprises a method for making hardness indentations by TEA CO2 laser-induced shock waves and an evaluation using neural networks. With the high intensity pulsed laser, a shock wave is induced on top of an indenter. The pressure of the shock wave pushes the indenter inside a test material. Indentations are created on different steel and aluminum alloys and descriptors are extracted to characterize the indentation. Following, Neural Networks are used to create the connections to the material properties. The best results are obtained when all the descriptors are included in the model, which shows that the measured indentation diameter and depth contain relevant information.

1.
N.
Ellendt
and
L.
Mädler
,
HTM Journal
73
,
3
12
(
2018
).
2.
R.
Potyrailo
,
K.
Rajan
,
K.
Stoewe
,
I.
Takeuchi
,
B.
Chisholm
and
H.
Lam
,
ACS Combinatorial Sci
13
,
579
633
(
2011
).
3.
T.
Czotscher
,
J. Las. Appl.
30
,
1
6
(
2018
).
4.
J. D.
O’Keefe
,
C. H.
Skeen
and
C. M.
York
,
Laser-induced deformation modes in thin metal targets
,
J. Appl. Phys.
44
, no.
10
, pp.
4622
4626
,
1973
.
5.
S.
Shalev-Shwartz
and
S.
Ben-David
,
Cambridge University Press
, (
2014
).
6.
Y.
Weike
,
C.
Chen
,
Z.
Wang
,
C.
Iek-Heng
and
S. Ping
Ong
,
Nature Communications
9
,
1
6
(
2018
).
7.
J.
Behrmann
,
C.
Etmann
,
T.
Boskamp
,
R.
Casadonte
,
J.
Kriegsmann
and
P.
Maaß
,
Bioinformatics
34
,
1215
1223
(
2018
).
8.
H. K. D. H.
Bhadeshia
,
ISIJ International
39
,
966
979
, (
1999
).
9.
K.
Hornik
,
M.
Stinchcombe
and
H.
White
,
Neural Networks
2
,
359
366
(
1989
).
10.
D. Otero
Baguer
,
I.
Piotrowska-Kurczewski
and
P.
Maaß
, “
Inverse Problems in designing new structural materials
,” in
7th International Conference on High Performance Scientific Computing
,
Hanoi
,
2018
.
11.
F.
Vollertsen
,
H. S.
Niehoff
and
H.
Wielage
,
Prod. Eng.
3
,
1
8
(
2009
).
12.
T.
Czotscher
,
Las. Manuf. Mat. Proc.
5
,
439
457
(
2018
).
13.
W.
Mendenhall
and
T.
Sincich
,
Statistics for Engineering and the Sciences (Fifth ed.)
(
Pearson / Prentice Hall
,
2007
).
14.
Y.
LeCun
,
Y.
Bengio
and
H.
Geoffrey
,
Deep Learning, Nature
521
, (
2015
).
15.
D.
Trauth
,
F.
Klocke
,
F.
Schongen
and
A.
Shirobokov
,
Verlag Meisenbach GmbH
3
,
1
8
(
2013
).
16.
D.
Bauer
,
VDI Zeitschriften
, (
1973
).
17.
T.
Mukai
,
K.
Ishikawa
and
K.
Higashi
,
Mat. Sci. Eng. A
204
,
12
18
(
1995
).
18.
T.
Czotscher
and
F.
Vollertsen
, “
Plasma Induced On Indenter Balls
,” in
8th International Conference on High Speed Forming
,
Columbus, Ohio
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.