Forming and wrinkling of composite textile reinforcements depends strongly of bending properties. The physics of bending of fibrous reinforcement is particular. Bending is related to the slip between the fibres. In addition the fibres are almost inextensible. Consequently the plate and shell standard approaches cannot be used. Numerical simulations of the forming can be done by introducing bending energy dependent on the bending moment and the curvature. In this way, it is possible to simulate wrinkles during shaping. To go further and simulate the overall deformation of the textile reinforcements in the thickness, a shell approach, different from the standard theories, is presented to correctly calculate the rotations of the normals of the textile reinforcement

1.
Sozer
,
E.
,
Simacek
,
P.
, &
Advani
,
S.
in Manufacturing Techniques for Polymer Matrix Composites
, edited by
S.
Advani
and
K.T.
Hsiao
(
Woodhead Publishing
2012
).
2.
Lukaszewicz
,
D.
,
Ward
,
C.
, &
Potter
,
K. D.
The engineering aspects of automated prepreg layup: History, present and future
Composites Part B: Engineering
,
43
(
3
)
997
1009
. (
2012
).
3.
Lee
,
W.
,
Padvoiskis
,
J.
,
Cao
,
J.
,
De Luycker
,
E.
,
Boisse
,
P.
,
Morestin
,
F.
,
Chen
J.
, &
Sherwood
,
J.
Bias-extension of woven composite fabrics
”.
International Journal of Material Forming
,
1
(
1
)
895
898
(
2008
)
4.
Boisse
,
P.
,
Hamila
,
N.
,
Helenon
,
F.
,
Hagège
,
B.
, &
Cao
,
J.
Different approaches for woven composite reinforcement forming simulation
”.
International Journal of Material Forming
,
1
(
1
),
21
29
(
2008
).
5.
Naouar
N
,
Vidal-Sallé
E
,
Schneider
J
,
Maire
E
,
Boisse
P.
Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography
”.
Compos Struct
116
,
165
76
(
2014
)
6.
d’Agostino
,
M. V.
,
Giorgio
,
I.
,
Greco
,
L.
,
Madeo
,
A.
, &
Boisse
,
P.
Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements
”.
International Journal of Solids and Structures
,
59
,
1
17
(
2015
).
7.
Ten Thije
RHW
,
Akkerman
R
,
Huetink
J.
Large deformation simulation of anisotropic material using an updated Lagrangian finite element method
Comput Method Appl Mech Eng.
196
(
33–34
),
3141
50
(
2007
).
8.
Skordos
AA
,
Aceves
CM
,
Sutcliffe
MPF
. “
A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites
Composites Part A
38
,
1318
30
(
2007
).
9.
Boisse
,
P.
,
Hamila
,
N.
,
Vidal-Sallé
,
E.
, &
Dumont
,
F.
Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses
Composites Science and Technology
71
(
5
),
683
692
(
2011
).
10.
Sjölander
,
J.
,
Hallander
,
P.
, &
Åkermo
,
M.
Forming induced wrinkling of composite laminates: a numerical study on wrinkling mechanisms
Composites Part A: Applied Science and Manufacturing
81
,
41
51
(
2016
).
11.
Harrison
,
P.
Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh
”.
Composites Part A: Applied Science and Manufacturing
81
,
145
157
(
2016
).
12.
Peirce
,
F. T.
The “handle” of cloth as a measurable quantity
”.
Journal of the Textile Institute Transactions
21
(
9
),
T377
T416
(
1930
).
13.
Kawabata
S
, “The standardization and analysis of hand evaluation”.
The Textile Machinery Society of Japan
,
Osaka
(
1980
)
14.
Boisse
,
P.
,
Colmars
,
J.
,
Hamila
,
N.
,
Naouar
,
N.
, &
Steer
,
Q
, “
Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations
”,
Composites Part B
141
234
249
(
2018
)
15.
Hamila
,
N.
,
Boisse
,
P.
,
Sabourin
,
F.
, &
Brunet
,
M.
A semi-discrete shell finite element for textile composite reinforcement forming simulation
”.
International journal for numerical methods in engineering
,
79
(
12
),
1443
1466
(
2009
).
16.
Hamila
,
N.
,
Boisse
,
P.
,
A meso-macro three node finite element for draping of textile composite preforms
,
Applied Composite Materials
,
14
(
4
)
235
250
(
2007
)
17.
Guzman-Maldonado
,
E.
,
Hamila
,
N.
,
Naouar
N.
,
Boisse
P.
Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization
,
Materials and Design
,
93
,
431
442
, (
2016
)
18.
Jauffrès
,
D.
,
Sherwood
,
J. A.
,
Morris
,
C. D.
, &
Chen
,
J.
Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming
”.
International Journal of Material Forming
,
3
(
2
),
1205
1216
(
2010
).
19.
Schirmaier
,
F. J.
,
Dörr
,
D.
,
Henning
,
F.
, &
Kärger
,
L.
A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF
).
Composites Part A: Applied Science and Manufacturing
,
102
,
322
335
(
2017
).
20.
Liang
,
B.
,
Colmars
,
J.
, &
Boisse
,
P.
A shell formulation for fibrous reinforcement forming simulations
”.
Composites Part A: Applied Science and Manufacturing
100
,
81
96
(
2017
).
21.
Döbrich
,
O.
,
Gereke
,
T.
,
Diestel
,
O.
,
Krzywinski
,
S.
, &
Cherif
,
C.
Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation
.
Journal of Industrial Textiles
44
(
1
),
70
84
(
2014
).
22.
Lomov
,
S. V.
,
A. V.
Truevtzev
and
C.
Cassidy
A predictive model for the fabric-to-yarn bending stiffness ratio of a plain-woven set fabric
Textile Research Journal
70
(
12
):
1088
1096
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.