Recent approaches in statistical modeling on fisheries research have focused on addressing the relationship between fish catch per unit effort (CPUE) data and remotely sensed oceanographic data. This study used multiple statistical modeling approaches to ensure a satisfied result in determining the most important parameter that influences the CPUE distribution of Rastrelliger kanagurta. Oceanographic data including water depth (WD), chlorophyll-a (CHL), sea surface temperature (SST), sea surface height (SSH) and surface wind (SW) are the environmental parameters which were extracted from 570 locations within EEZ of Malaysia by using GIS techniques. The combination of CPUE and oceanographic data was analyzed and then fitted simultaneously in each performance of Generalized Additive Model (GAM), Generalized Linear Model (GLM), Boosted Regression Tree (BRT) and Multivariate Adaptive Regression Splines (MARS). Each statistical modeling approach resulted difference ways to describe the relationship between fish and its environment. Results showed the non-linear behavior fish CPUE having the strongest overall relationship with SSH as SSH was always at the top. This indicated that SSH was the most important parameter affecting CPUE based on the highest percentage of relative influence and variable importance with great significant relationship (p<0.001) compared to other parameters. This study showed the capability of GIS and statistical modeling to understand the R. kanagurta distribution and its environment parameters in South China Sea.

1.
N. I
Ahmad
,
W. Ro. W.
Mahiyuddin
,
T. R. T.
Mohamad
,
C. Y.
Ling
,
S. F.
Daud
,
N. C.
Hussein
,
N. A.
Abdullah
,
R.
Shaharudin
and
L. H.
Sulaiman
.
Fish Consumption Pattern among Adults of Different Ethnics in Peninsular Malaysia
.
Food & Nutrition Research
,
2016
,
60
:
32697
.
2.
N. A.
Razib
, and
M. A.
Mustapha
.
Spatial Distribution of Rastrelliger kanagurta (Cuvier 1817) in the South China Sea Exclusive Economic Zone (EEZ
).
AIP Conference Proceedings
1571
,
2013
, pp.
473
479
.
3.
M.
Ali
and
M.
Katoh
.
Tagging Program for Economically Important Small Pelagic Species in the South China Sea and the Andaman Sea Regional Project Terminal Report
.
SEAFDEC/MFRDMD, 2013, SP/27
:
35
pp.
4.
P.
Kaladharan
,
M.
Varghese
,
N. K.
Sanil
,
R. J.
Nair
and
N.
Aswathy
. Marine Ecosystems Challenges and Opportunities (MECOS 2),
Book of Abstracts. Marine Biological Association of India
, December 2-5,
2014
,
Kochi
, p.
5
7
.
5.
Poseidon Aquatic Resource Management Ltd
. Assessments of the Indian Mackerel (Rastrelliger kanagurta) and the Hilsa shad (Tenualosa ilisha) fisheries in the BOBLME countries.
Phuket, Thailand
,
Bay of Bengal Large Marine Ecosystem Project (BOBLME
),
2011
,
378
pp.
6.
Mark N.
Maunder
,
J. R.
Sibert
,
A.
Fonteneau
,
J.
Hampton
,
P.
Kleiber
,
S. J.
Harley
.
Interpreting Catch per Unit Effort Data to Assess the Status of Individual Stocks and Communities
.
ICES Journal of Marine Science
, Volume
63
, Issue
8
,
2006
, pp.
1373
1385
.
7.
J.
Gulland
.
Catch Per Unit Effort as a Measure of Abundance
.
Collective Volume of Scientific Papers ICCAT
, Volume
3
,
1974
, pp.
1
11
.
8.
S.J.
Harley
,
R.A.
Myers
, and
A.
Dunn
.
A Meta-Analysis of the Relationship between Catch-Per-Unit-Effort and Abundance
.
Canadian Journal of Fisheries and Aquatic Sciences
,
2001
, Volume
58
, pp.
1705
1772
.
9.
P. D.
Lynch
,
K. W.
Shertzer
and
R. J.
Latour
.
Performance of Methods used to Estimate Indices of Abundance for Highly Migratory Species
.
Fisheries Research
125–126
,
2012
, pp.
27
39
.
10.
D. A.
James
,
J. W.
Erickson
and
B. A.
Barton
.
Using a Geographic Information System to Assess the Accuracy of Radio-Triangulation Techniques for Fish Telemetry
.
North American Journal of Fisheries Management
, Volume
23
, Issue
4
,
2011
, pp.
1271
1275
.
11.
T.
Nishida
and
A. J.
Booth
. Recent Approaches using GIS in the Spatial Analysis of Fish Populations. Proceedings of Symposium on “Spatial Processes and the Management of Fish Populations”
17th Lowell Wakefield Fisheries Symposium
,
Anchorage, USA
.
2001
.
12.
D. M.
Nelson
,
T.
Haverland
, and
E.
Finnen
.
EcoGIS – GIS Tools for Ecosystem Approaches to Fisheries Management
.
NOAA Technical Memorandum NOS NCCOS
,
2009
,
75
.
38
pp.
13.
I.
Mateo
and
D. H.
Hanselman
.
A Comparison of Statistical Methods to Standardize Catch-Per-Unit-Effort of the Alaska Longline Sablefish Fishery
.
U. S. Department of Commerce NOAA, Technical Memorandum NMFS-AFSC-269
,
71
pp.
14.
C. L.
Shih
,
S. C.
Chou
,
H. Y.
Wang
and
C. C.
Hsu
.
Trial Estimation of Standardized Catch Per Unit Effort of Yellowfin Tuna by the Taiwanese Longline Fishery in the Tropical Waters of the Atlantic Ocean
.
ICCAT
, Volume
70
, Issue
6
,
2014
, pp.
2738
2762
.
15.
M.
Renner
,
J. K.
Parrish
,
J. F.
Piatt
,
K. J.
Kuletz
,
A. E.
Edwards
and
G. L.
Hunt
.
Modeled Distribution and Abundance of a Pelagic Seabird Reveal Trends in Relation to Fisheries
.
Marine Ecology Progress Series
, Volume
484
,
2013
, pp.
259
277
.
16.
J. R.
Leathwick
,
J.
Elith
and
T.
Hastiec
.
Comparative Performance of Generalized Additive Models and Multivariate Adaptive Regression Splines for Statistical Modeling of Species Distributions
.
Ecological Modeling
199
,
2006
, pp.
188
196
.
17.
J. A.
Gulland
.
Fish stock assessment: A Manual of Basic Methods.
John Wiley and Sons
,
New York
,
1983
.
18.
M. G.
Hinton
and
M. N.
Maunder
. Methods for Standardizing CPUE and How to Select among Them.
Inter-American Tropical Tuna Commission
,
SCTB16 Working Paper
,
USA
,
2003
.
19.
J.
Elith
,
J. R.
Leathwick
and
T.
Hastie
.
A working guide to boosted regression trees
.
J. Anim. Ecol.
77
(
4
),
2005
, pp.
802
813
.
20.
G.
Ridgeway
.
Generalized Boosted Regression Models
.
R Package Version 1.6–3.1.
,
2010
. http://CRAN.R-project.org/package=gbm
21.
J.H.
Friedman
.
Greedy Function Approximation: The Gradient Boosting Machine
.
Ann. Stat.
29
,
2001
, pp.
1189
1232
.
22.
J. H.
Friedman
.
Multivariate Adaptive Regression Splines. Ann Stat
19
,
1991
, pp.
1
141
.
23.
M. D.
Behn
and
M. T.
Zuber
.
A Comparison of Ocean Topography Derived from the Shuttle Laser Altimeter-01 and TOPEX/POSEIDON
.
IEEE Transactions on Geoscience and Remote Sensing
, Volume
38
, No.
3
,
2000
, pp.
1425
1438
.
24.
S. P.
Xie
,
Q.
Xie
,
D.
Wang
, and
W. T.
Liu
.
Summer Upwelling in the South China Sea and its Role in Regional Climate Variations
.
Journal of Geophysical Research
,
2003
, pp.
108
.
25.
K.
Nimit
,
M. N.
Kumar
,
N.
Swetha
,
J.
Nayak
,
P.
Rose
and
T. S.
Kumar
.
Utility of Sea Surface Height anomaly (SSHa) in determination of Potential Fishing Zones
.
Indian National Centre for Ocean Information Services (INCOIS)
,
2015
.
This content is only available via PDF.
You do not currently have access to this content.