In order to provide accurate solar irradiation approximation, and to quantify solar energy; the dependencies between solar irradiation, sunshine hours and ambient temperature must be taken into account. The amount of daily irradiation received for a particular area is among the most important meteorological parameters for numerous application fields. The utilization of accurate distribution minimizes the degree of uncertainty in solar resource estimates. This study applies the copula method for solar radiation estimation. This particular method is useful where probability of marginals fit into various families of distributions. The Archimedean copula and Gaussian copula were applied to evaluate solar irradiation in Johor Bharu, Malaysia. The solar irradiation, sunshine hours and ambient temperature were fit into five marginal probability distributions, namely, Gamma, Lognormal, Burr, Weibull and Normal distributions. The optimal fit marginal probability distribution was assessed by selecting the lowest possible value for Akaike Information Criterion (AIC). Finally, the bivariate copula best fit distribution was combined to obtain at the triavariate joint probability distribution. The results indicate that the best fit of joint probability between solar irradiation, sunshine hours and ambient temperature is Clayton copula.

1.
Aas
,
K.
,
Czado
,
C.
,
Frigessi
,
A.
, &
Bakken
,
H.
(
2009
).
Pair-copula constructions of multiple dependence
.
Insurance: Mathematics and Economics
,
44
(
2
),
182
198
.
2.
Akaike
,
H.
(
1974
).
A New Look at the Statistical Model Identification
.
IEEE Transactionson Automatic Control
,
19
(
6
),
716
723
.
3.
Aloui
,
R.
,
Hammoudeh
,
S.
, &
Nguyen
,
D. K.
(
2013
).
A time-varying copula approach to oil and stock market dependence: The case of transition economies
.
Energy Economics
,
39
,
208
221
.
4.
Atique
,
F.
, &
Attoh-Okine
,
N.
(
2016
).
Using copula method for pipe data analysis
.
Construction and Building Materials
,
106
,
140
148
.
5.
Bedford
,
T.
, &
Cooke
,
R. M.
(
2002
).
Vines - A new graphical model for dependent random variables
.
Annals of Statistics
,
30
(
4
),
1031
1068
.
6.
Charpentier
,
A.
(
2003
).
Tail distribution and dependence measures. Noûs
,
1
25
.
7.
Cong
,
R.-G.
, &
Brady
,
M.
(
2012
).
The interdependence between rainfall and temperature: copula analyses
.
The Scientific World Journal
,
2012
,
1
11
.
8.
Cooke
,
R. M.
,
Morales
,
O.
, &
Kurowicka
,
D.
(
2007
).
Vines in Overview Invited Paper Third Brazilian Conference on Statistical Modelling in Insurance and Finance Maresias
,
1
,
1
17
.
9.
Dai
,
Q.
,
Han
,
D.
,
Rico-Ramirez
,
M. a.
, &
Islam
,
T.
(
2014
).
Modelling radar-rainfall estimation uncertainties using elliptical and Archimedean copulas with different marginal distributions
.
Hydrological Sciences Journal
,
59
(
11
),
1992
2008
.
10.
Genest
,
C.
, &
Favre
,
A.-C.
(
2007
).
Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask
.
Journal of Hydrologic Engineering.
11.
Hua
,
L.
, &
Joe
,
H.
(
2011
).
Tail order and intermediate tail dependence of multivariate copulas
.
Journal of Multivariate Analysis
,
102
(
10
),
1454
1471
.
12.
Joe
,
H.
(
1997
).
Multivariate Models and Dependence Concepts.
London
:
Chapman & Hall
.
13.
Karmakar
,
S.
, &
Simonovic
,
S. P.
(
2009
).
Bivariate flood frequency analysis. Part 2: A copula-based approach with mixed marginal distributions
.
Journal of Flood Risk Management
,
2
(
1
),
32
44
.
14.
Muzathik
,
A.
(
2013
).
Potential of Global Solar Radiation in Terengganu, Malaysia
.
International Journal of Energy Engineering
,
3
,
130
136
.
15.
Nelsen
,
R. B.
(
2006
). An Introduction to Copulas (2nd ed.).
Springer Series in Statistics, Springer
,
New York
.
16.
Nguyen-Huy
,
T.
,
Deo
,
R. C.
,
An-Vo
,
D. A.
,
Mushtaq
,
S.
, &
Khan
,
S.
(
2017
).
Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones
.
Agricultural Water Management
,
191
,
153
172
.
17.
Serinaldi
,
F.
, &
Grimaldi
,
S.
(
2007
).
Fully Nested 3-Copula: Procedure and Application on Hydrological Data
.
Journal of Hydrologic Engineering
,
12
(
4
),
420
430
.
18.
Sklar
,
A. W.
(
1959
).
Fonctions de repartition ‘a n dimension et leurs marges
.
Publications de lInstitut de Statistique de lUniversite de Paris
,
8
,
229
231
.
19.
Venter
,
G. G.
(
2002
).
Tails of copulas
.
Proceedings of the Casualty Actuarial Society
,
89
(
170–171
),
68
113
.
20.
Vernieuwe
,
H.
,
Vandenberghe
,
S.
,
De Baets
,
B.
, &
Verhoest
,
N. E. C.
(
2015
).
A continuous rainfall model based on vine copulas
.
Hydrology and Earth System Sciences
,
19
(
6
),
2685
2699
.
21.
Zhang
,
L.
, &
Singh
,
V. P.
(
2007
).
Bivariate rainfall frequency distributions using Archimedean copulas
.
Journal of Hydrology
,
332
(
1–2
),
93
109
.
22.
Zhang
,
L.
, &
Singh
,
V. P.
(
2014
).
Trivariate Flood Frequency Analysis Using Discharge Time Series with Possible Different Lengths: Cuyahoga River Case Study
.
Journal of Hydrologic Engineering
,
19
(
10
),
5014012
.
This content is only available via PDF.
You do not currently have access to this content.