At vehicle insurance companies, the determination of the appropriate pure premium will make the business run well. In this study, we were modeling claims frequency data by considering the characteristics of policyholder such as policyholder’s age, marital status, sex, car engine capacity, and age. The data used in this study is a non-motor vehicle and non-truck motor vehicle insurance data, which filed claims during 2013 in a general insurance company. Explaining the significance or value of the research. We are using Generalized Linear Model Multivariate Poisson with Artificial Marginal (GLM-MPAM) to estimate model parameters. The parameter values of this model are estimated using the Maximum Likelihood Estimation method. Furthermore, the estimation result of the parameter can be alternative in the calculation of the pure premium in the next period.

1.
Promislow
SD
. Fundamentals of Actuarial Mathematics: Second Edition.
2011
.
2.
Jamilatuzzahro
,
Caraka
RE
,
Erda
G
,
Maulida
FL
. Analisis Faktor-Faktor yang Mempengaruhi Status Polis Asuransi Jiwa dengan Regresi Logistik Multinomial. In:
SEMINAR NASIONAL MATEMATIKA
2017.
Depok
:
Universitas Indonesia
;
2017
. p.
509
21
.
3.
Jamilatuzzahro
,
Caraka
R.
,
Herliansyah
R.
Aplikasi Generalized Linear Model dengan R [Internet]
. 1st ed.
Yogyakarta
:
INNOSAIN Graha Ilmu Yogyakarta
;
2018
. Available from: http://rezzyekocaraka.com/book/
4.
Jamilatuzzahro
,
Caraka
RE
.
Modelling Inflation using Generalized Additive Mixed Models (GAMM
).
Int J Chem Math Physics(IJCMP) [Internet].
2017
;
1
(
1
):
73
39
. Available from: http://aipublications.com/ijcmp/detail/modelling-inflation-using-generalized-additive-mixed-models-gamm/
5.
Caraka
RE
,
Shohaimi
S
,
Kurniawan
ID
,
Herliansyah
R
,
Budiarto
A
,
Sari
SP
, et al 
Ecological Show Cave and Wild Cave: Negative Binomial Gllvm’s Arthropod Community Modelling
.
Procedia Comput Sci [Internet].
2018
;
135
:
377
84
. Available from: www.sciencedirect.comwww.sciencedirect.comwww.elsevier.com/locate/procedia1877-0509
6.
Herliansyah
R
,
Fitia
I.
Latent variable models for multi-species counts modeling in ecology
.
Biodiversitas J Biol Divers [Internet].
2018
;
19
(
5
):
1871
6
. Available from: http://biodiversitas.mipa.uns.ac.id/D/D1905/D190538.pdf
7.
Boucher
JP
,
Denuit
M
,
Guillén
M.
Models of Insurance Claim Counts with Time Dependence Based on Generalization of Poisson and Negative Binomial Distributions
.
Variance [Internet].
2008
;
2
(
1
):
135
62
. Available from: http://www.variancejournal.org/issues/02-01/135.pdf
8.
Hogg
R V
,
Craig
AT
.
Introduction to Mathematical Statistics [Internet]
. Vol.
14
,
Technometrics.
1995
.
807
p. Available from: http://www.jstor.org/stable/1267313?origin=crossref
9.
Berkhout
P
,
Plug
E.
A bivariate poisson count data model using conditional probabilities
.
Stat Neerl.
2004
;
58
(
3
):
349
64
.
10.
Klugman
SA
,
Panjer
HH
,
Willmot
GE
.
Loss models: from data to decisions
, 3rd ed.
Soc Actuar
.
2012
;
11.
Caraka
RE
.
Kajian Perhitungan Dana Pensiun Menggunakan Acrrued Benefit Cost
.
J Badan Pendidik Dan Pelatih Keuang Kementeri Keuang Republik Indones [Internet].
2016
Dec 28;
2
(
9
):pp.
160
180
. Available from: http://www.bppk.kemenkeu.go.id/publikasi/jurnal
This content is only available via PDF.
You do not currently have access to this content.