AOP3 is an important enzyme gene for secondary metabolism of glucosinolate side chain. In this study, the Brassica oleracea var. capitata AOP3 (BocAOP3) gene sequence was obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The analysis results indicated that BocAOP3 gene contains an open reading frame of 933 bp that encodes a 310 amino acid protein with a calculated molecular mass of 35.48 kD and an isoelectric point (pI) of 6.55. Secondary structure of protein indicated that BocAOP3 protein has 10 alpha helix, 13 beta sheet, and 25 beta turn and most amino acids are hydrophilic. Subcellular localization predicted BocAOP3 gene was in the cytoplasm. The conserved domain of the BocAOP3 protein is PLN02365. Homology analysis indicated that the BocAOP3 protein is apparently conserved during plant evolution. The results of this study provided a molecular basis for elucidating the BocAOP3 gene function in cabbage.

1.
D. C.
Tian
,
H. J.
He
,
H. L.
Yan
,
J. M.
Xie
,
J. G.
Kang
,
Mapping QTL and analysis on glucosinolates total content in cabbage
,
Acta Agriculturae Boreali-Sinica.
3
(
2014
)
6
10
.
2.
B. G.
Hansen
,
R. E.
Kerwin
,
J. A.
Ober
,
V. M.
Lambrix
,
T.
Mitchell-Olds
,
J.
Gershenzon
,
B. A.
Halkier
,
D. J.
Kliebenstein
,
A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis
,
Plant Physiology.
148
(
2008
)
2096
2108
.
3.
H. C.
He
,
W. H.
Cao
,
X. W.
Tang
,
L.
Liu
,
Contents of glucosinolates in Brassica vegetables
,
Science and Technology of Food Industry.
6
(
2000
)
4
.
4.
E.
Andréasson
,
L. B.
Jørgensen
,
A. S.
Höglund
,
L.
Rask
,
J.
Meijer
,
Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus
,
Plant Physiology.
127
(
2001
)
1750
1763
.
5.
R.
Mithen
,
K.
Faulkner
,
R.
Magrath
,
P.
Rose
,
G.
Williamson
,
J.
Marquez
,
Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells
,
Theoretical and Applied Genetics.
4
(
2003
)
727
734
.
6.
C. D.
Grubb
,
S.
Abel
,
Glucosinolate metabolism and its control
,
Trends in Plant Science.
2
(
2006
)
89
100
.
7.
C. S.
Neal
,
D. P.
Fredericks
,
C. A.
Griffiths
,
A. D.
Neale
,
The characterisation of AOP2: a gene associated with the biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis thaliana
,
BMC Plant Biology.
1
(
2010
)
170
.
8.
D. J.
Kliebenstein
,
J.
Kroymann
,
P.
Brown
,
A.
Figuth
,
D.
Pedersen
,
J.
Gershenzon
,
T.
Mitchell-Olds
,
Genetic control of natural variation in Arabidopsis glucosinolate accumulation
,
Plant Physiology.
2
(
2001
)
811
825
.
9.
D. J.
Kliebenstein
,
V. M.
Lambrix
,
M.
Reichelt
,
J.
Gershenzon
,
T.
Mitchell-Olds
,
Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-oependent dioxygenases control glucosinolate diosynthesis in Arabidopsis
,
Plant Cell.
3
(
2001
)
681
693
.
10.
M.
Gao
,
G.
Li
,
B.
Yang
,
W. R.
Mccombie
,
C. F.
Quiros
,
Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence
,
Genome.
4
(
2004
)
666
679
.
11.
L. M.
Jensen
,
D. J.
Kliebenstein
,
B.
Meike
,
Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis
,
Frontiers in Plant Science.
6
(
2015
)
1
15
.
This content is only available via PDF.
You do not currently have access to this content.