Introduction: Garlic (Allium sativum) has been used for a long time as a spice or traditional medicine. Garlic contains allicin compound which has the role as anti-infective agents. This study aims to determine the potential of garlic as an antimicrobial agent in Staphylococcus aureus and Corynebacterium diphtheriae bacteria in vitro and determine the activity of allicin as an antibacterial in silico. Method: This study used garlic extract with the aqueous extract method. The antimicrobial potential test used in this study was the Kirby-Bauer disk diffusion test. The activity of allicin compounds as antibacterial agents was explored through in silico analysis using molecular docking methods to target proteins that play a role in bacterial division (FtsZ protein) with Autodock Vina. Results: The results showed that there were significant differences in the size of the inhibitory zone of garlic extract (Allium sativum) on the growth of Staphylococcus aureus bacteria (p <0.05) and Corynebacterium diphtheriae (p <0.05). The results of in silico analysis of allicin compounds showed significant inhibitory activity on the FtsZ protein compared to penicillin, with an affinity of -10 kcal/mol. Conclusion: The results of this study indicate that garlic extract (Allium sativum) shows antibacterial potential in vitro. In addition, allicin compounds contained in garlic extract have the potential as one of the alternative targets for new antibiotics.

1.
Klein
EY
,
Van Boeckel
TP
,
Martinez
EM
, et al 
2018
.
Global increase and geographic convergence in antibiotic consumption between 2000 and 2015
.
Proc Natl Acad Sci U S A.
115
(
15
):
E3463
E3470
.
2.
Lim
C
,
Takahashi
E
,
Hongsuwan
M
, et al 
2016
.
Epidemiology and burden of multidrug-resistant bacterial infection in a developing country
.
Elife.
5
:
e18082
.
3.
Ventola
CL
.
2015
.
The antibiotic resistance crisis: part 1: causes and threats
.
P T.
40
(
4
):
277
283
.
4.
Lee
CR
,
Cho
IH
,
Jeong
BC
,
Lee
SH
.
2013
.
Strategies to minimize antibiotic resistance
.
Int J Environ Res Public Health.
10
(
9
):
4274
4305
.
5.
Adetumbi
MA
,
Lau
BH
.
1983
.
Allium sativum (garlic)--a natural antibiotic
.
Med Hypotheses.
12
(
3
):
227
237
.
6.
Eltaweel
,
MA
.
2014
.
Antibacterial effect of garlic (Allium sativum) on Staphyloccus aureus: An in vitro Study
. In
International Conference on Advances in Environment, Agriculture & Medical Sciences (ICAEAM’14
).
Kuala Lumpur, Malaysia
.
7.
Silagy
CA
,
Neil
HA
.
1994
.
A meta-analysis of the effect of garlic on blood pressure
.
J Hypertens.
12
(
4
):
463
468
.
8.
Phelps
S
,
Harris
WS
.
1993
.
Garlic supplementation and lipoprotein oxidation susceptibility
.
Lipids.
28
:
475
457
.
9.
Dorant
E
,
van den Brandt
PA
,
Goldbohm
RA
,
Hermus
RJ
,
Sturmans
F.
1993
.
Garlic and its significance for the prevention of cancer in humans: A critical view
.
Br J Cancer.
67
:
424
429
.
10.
Cavallito
CJ
,
Bailey
JH
.
1944
.
Allicin, the antibacterial principle of Allium sativum L. Isolation, physical properties and antibacterial action
.
J Am Chem Soc.
66
:
1950
1951
.
11.
Ankri
S
,
Mirelman
D.
1999
.
Antimicrobial properties of allicin from garlic
.
Microbes Infect.
1
(
2
):
125
129
.
12.
Chambers
HF
,
Deleo
FR
.
2009
.
Waves of resistance: Staphylococcus aureus in the antibiotic era
.
Nat Rev Microbiol.
7
(
9
):
629
641
.
13.
Foster
TJ
.
2017
.
Antibiotic resistance in Staphylococcus aureus. Current status and future prospects
.
FEMS Microbiol Rev.
41
(
3
):
430
449
.
14.
Pereira
GA
,
Pimenta
FP
,
Santos
FR
,
Damasco
PV
,
Hirata Júnior
R
,
Mattos-Guaraldi
AL
.
2008
.
Antimicrobial resistance among Brazilian Corynebacterium diphtheriae strains
.
Mem Inst Oswaldo Cruz.
103
(
5
):
507
510
.
15.
Sass
P
,
Brötz-Oesterhelt
H.
2013
.
Bacterial cell division as a target for new antibiotics
.
Curr Opin Microbiol.
16
(
5
):
522
530
.
16.
Bi
EF
,
Lutkenhaus
J.
1991
.
FtsZ ring structure associated with division in Escherichia coli
.
Nature.
354
:
161
164
.
17.
Seidel
V.
2012
.
Initial and Bulk Extraction of Natural Products Isolation
.
Methods Mol Biol.
864
:
27
41
.
18.
Sarker
SD
,
Latif
Z
,
Gray
AI
.
2006
.
Natural Products Isolation
, 2nd edition.
New Jersey
:
Human Press Inc
.
19.
Fujisawa
H
,
Watanabe
K
,
Suma
K
,
Origuchi
K
,
Matsufuji
H
,
Seki
T
,
Ariga
T.
2009
.
Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds
.
Biosci Biotechnol Biochem.
73
(
9
):
1948
1955
.
20.
Chabot
MR
,
Stefan
MS
,
Friderici
J
,
Schimmel
J
,
Larioza
J.
2015
.
Reappearance and treatment of penicillin-susceptible Staphylococcus aureus in a tertiary medical centre
.
J Antimicrob Chemother.
70
(
12
):
3353
3356
.
21.
Balouiri
M
,
Sadiki
M
,
Ibnsouda
SK
.
2016
.
Methods for in vitro evaluating antimicrobial activity: A review
.
J Pharm Biomed Anal.
6
(
2
):
71
79
.
22.
Boboye
BE
,
Alli
AJ
.
2008
.
Cellular Effects of Garlic (Allium sativum) Extract on Pseudomonas aeruginosa and Staphylococcus aureus
.
Res J Med Plant
,
2
:
79
85
.
This content is only available via PDF.
You do not currently have access to this content.