The impressive optoelectronic properties of perovskite along with its optimal bandgap for application in a tandem solar cell has resulted in a lot of research interest in the field of perovskite/Si tandem solar cells. However, due to the lack of clarity of the design space optimization, the progress in the area is slow. In that context, here, we calculate the limiting performance metrics of perovskite/Si tandem solar cell as a function of active layers thicknesses and accordingly identify the optimum thicknesses of the active layer. Our results show that while the thickness of perovskite affects the performance of the device largely, the effect of the thickness of Si is nominal. Further, due to the increase in the two counter processes i.e., generation rate and recombination rate in the device with the thickness, there exist a pair of optimum thickness; and we elucidate the same. Indeed, our modelling methodology and results provide the direction for design space optimization of the perovskite/Si tandem solar cells.

1.
Kang
MH
,
Kim
N
,
Yun
C
, et al. 
Analysis of a commercial-scale photovoltaics system performance and economic feasibility
.
J Renew Sustain Energy
2017
;
9
: p
023505
.
2.
Noh
J
,
Im
S
,
Heo
J
, et al. 
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells
.
Nano Lett
2013
;
13
:
1764
1769
.
3.
Ke
W
,
Zhao
D
,
Grice
CR
, et al. 
Efficient planar perovskite solar cells using room-temperature vacuum-processed C 60 electron selective layers
.
J Mater Chem A
2015
;
3
:
17971
17976
.
4.
Correa-Baena
J-P
,
Abate
A
,
Saliba
M
, et al. 
The rapid evolution of highly efficient perovskite solar cells
.
Energy Environ Sci
2017
;
10
:
710
727
.
5.
Agarwal
S
,
Seetharaman
M
,
Kumawat
NK
, et al. 
On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells
.
J Phys Chem Lett
2014
;
5
:
4115
4121
.
6.
Agarwal
S
,
Nair
PR
.
Pinhole induced efficiency variation in perovskite solar cells
.
J Appl Phys
2017
;
122
:
7
.
7.
Agarwal
S
,
Nair
PR
.
Performance loss analysis and design space optimization of perovskite solar cells
.
J Appl Phys
2018
;
124
:
183101
.
8.
Futscher
MH
,
Ehrler
B.
Efficiency Limit of Perovskite/ Si Tandem Solar Cells
.
ACS Energy Lett
2016
;
1
:
863
868
.
9.
Kulkarni
SA
,
Baikie
T
,
Boix
PP
, et al. 
Band-gap tuning of lead halide perovskites using a sequential deposition process
.
J Mater Chem A
2014
;
2
:
9221
.
10.
Eperon
GE
,
Stranks
SD
,
Menelaou
C
, et al. 
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
.
Energy Environ Sci
2014
;
7
:
982
.
11.
Löper
P
,
Niesen
B
,
Moon
S-J
, et al. 
Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells
.
IEEE J Photovolt
2014
;
4
:
1545
1551
.
12.
Jiang
Y
,
Almansouri
I
,
Huang
S
, et al. 
Optical analysis of perovskite/silicon tandem solar cells
.
J Mater Chem C
2016
;
4
:
5679
5689
.
13.
McMeekin
DP
,
Sadoughi
G
,
Rehman
W
, et al. 
A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
.
Science
2016
;
351
:
151
155
.
14.
Albrecht
S
,
Saliba
M
,
Correa Baena
JP
, et al. 
Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature
.
Energy Environ Sci
2016
;
9
:
81
88
.
15.
Bush
KA
,
Palmstrom
AF
,
Yu
ZJ
, et al. 
23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
.
Nat Energy
2017
;
2
:
17009
.
16.
Mailoa
JP
,
Bailie
CD
,
Johlin
EC
, et al. 
A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
.
Appl Phys Lett
2015
;
106
:
121105
.
17.
Sahli
F
,
Werner
J
,
Kamino
BA
, et al. 
Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
.
Nat Mater
2018
;
17
:
820
826
.
18.
Meillaud
F
,
Shah
A
,
Droz
C
, et al. 
Efficiency limits for single-junction and tandem solar cells
.
Sol Energy Mater Sol Cells
2006
;
90
:
2952
2959
.
19.
Futscher
MH
,
Ehrler
B.
Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions
.
ACS Energy Lett
2017
;
2
:
2089
2095
.
20.
Kaminski
PM
,
Isherwood
PJM
,
Womack
G
, et al. 
Optical Optimization of Perovskite Solar Cell Structure for Maximum Current Collection
.
Energy Procedia
2016
;
102
:
11
18
.
21.
Agarwal
S
,
Nair
PR
.
Device Engineering of Perovskite Solar Cells to Achieve Near Ideal Efficiency
.
Appl Phys Lett
2015
;
107
:
123901
.
22.
Sze
SM
,
Ng
KK
.
Physics of Semiconductor Devices
.
U.K
.:
John Wiley & Sons, Inc.
,
2006
.
23.
Liu
M
,
Johnston
MB
,
Snaith
HJ
.
Efficient planar heterojunction perovskite solar cells by vapour deposition
.
Nature
2013
;
501
:
395
402
.
24.
Agarwal
S
,
Nair
PR
.
Performance optimization for Perovskite based solar cells
. In:
40ᵗʰ Photovoltaic Specialist Conference
.
Denver
:
IEEE
,
2014
, pp.
1515
1518
.
25.
Green
MA
.
Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients
.
Sol Energy Mater Sol Cells
2008
;
92
:
1305
1310
.
26.
Leguy
AMA
,
Hu
Y
,
Campoy-Quiles
M
, et al. 
Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells
.
Chem Mater
2015
;
27
:
3397
3407
.
27.
Yamada
Y
,
Nakamura
T
,
Endo
M
, et al. 
Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications
.
J Am Chem Soc
2014
;
136
:
11610
11613
.
28.
Johnston
MB
,
Herz
LM
.
Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies
.
Acc Chem Res
2016
;
49
:
146
154
.
29.
NREL
.
Solar Spectral Irradiance: ASTM G-173
, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed 28 August 2018).
This content is only available via PDF.
You do not currently have access to this content.