Alzheimer’s is a dangerous disease that causes dementia. Malfunctioned gene in the brain caused by Alzheimer Disease (AD) make some problem in the brain (e.g memory). Recovering network of the gene in the AD from Alzheimer’s gene expression data is essential to understand the information about AD. In this research, we want to find groups of genes that co-expressed in some condition, called biclusters, and find the network of those genes based on that group. The problem to find the accurate network/information is the unknown external factor that affects the measurement. Here we use probability-based biclustering to cover the uncertainty. We use BicMix, a new probabilistic-based biclustering method to find biclusters of gene and the gene expression network. This method use a Bayesian framework and models the data as a result of the multiplication of two sparse matrices. The value of these matrices represents whether or not a gene or a condition included in a bicluster. Three-Parameter Beta (TPB) distribution and variational expectation maximization (VEM) is respectively used to induce the sparsity of these matrices and to estimate the parameters. Once we get the biclusters, the result can be used to build the gene co-expression network.

1.
Alzheimers Association
,
Basics of Alzheimer S Disease
, p.
62
,
2017
.
2.
M.
Prince
,
A.
Comas-Herrera
,
M.
Knapp
,
M.
Guerchet
, and
M.
Karagiannidou
,
World Alzheimer Report 2016 Improving healthcare for people living with dementia. Coverage, Quality and costs now and in the future
,
Alzheimers Dis. Int.
, pp.
1140
,
2016
.
3.
W.
Kong
 et al.,
Independent component analysis of Alzheimers DNA microarray gene expression data
,
Mol. Neurodegener.
, vol.
4
, no.
1
, pp.
114
,
2009
.
4.
X.
Wu
 et al.,
Reordering based integrative expression profiling for microarray classification
,
BMC Bioinformatics
, vol.
13
Suppl
2
, no. Suppl 2, pp.
15
,
2012
.
5.
J.
Xia
,
D. M.
Rocke
,
G.
Perry
, and
M.
Ray
,
Differential Network Analyses of Alzheimers Disease Identify Early Events in Alzheimers Disease Pathology
,
Int. J. Alzheimers. Dis.
, vol.
2014
,
2015
.
6.
G. M.
Church
,
Biclustering of Expression Data v (I, J)
, pp.
93103
,
2000
.
7.
S.
Sinica
,
Plaid Models for Gene Expression Data
, no. May 2000,
2012
.
8.
G.
Ardaneswari
,
A.
Bustamam
, and
D.
Sarwinda
,
Implementation of plaid model biclustering method on microarray of carcinoma and adenoma tumor gene expression data
,
J. Phys. Conf. Ser.
, vol.
893
, no.
1
,
2017
.
9.
M.
Lee
,
H.
Shen
,
J. Z.
Huang
, and
J. S.
Marron
,
Biclustering via Sparse Singular Value Decomposition
,
Biometrics
, vol.
66
, no.
4
, pp.
10871095
,
2010
.
10.
W.
Kong
,
X.
Mou
, and
X.
Hu
,
Exploring matrix factorization techniques for significant genes identification of Alzheimer s disease microarray gene expression data
, vol.
12
, no. Suppl
5
, pp.
19
,
2011
.
11.
M.
Sill
,
S.
Kaiser
,
A.
Benner
, and
A.
Kopp-schneider
,
Robust biclustering by sparse singular value decom-position incorporating stability selection
,
Bioinformatics
, vol.
27
, no.
15
, pp.
20892097
,
2011
.
12.
J.
Gu
and
J. S.
Liu
,
Bayesian biclustering of gene expression data
,
BMC Genomics
,
2008
.
13.
S.
Hochreiter
 et al.,
FABIA: Factor analysis for bicluster acquisition
,
Bioinformatics
, vol.
26
, no.
12
, pp.
15201527
,
2010
.
14.
M.
Denitto
,
M.
Bicego
,
A.
Farinelli
, and
M. A. T.
Figueiredo
,
Spike and slab biclustering
,
Pattern Recognit.
, vol.
72
, pp.
186195
,
2017
.
15.
C.
Gao
,
I. C.
McDowell
,
S.
Zhao
,
C. D.
Brown
, and
B. E.
Engelhardt
,
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering
,
PLoS Comput. Biol.
, vol.
12
, no.
7
, pp.
139
,
2016
.
16.
C.
Gao
,
Bayesian group latent factor analysis with structured sparse priors.
17.
J.
Caldas
and
S.
Kaski
,
Bayesian biclustering with the plaid model
,
Proc. 2008 IEEE Work. Mach. Learn. Signal Process. MLSP 2008
, no. May, pp.
291296
,
2008
.
This content is only available via PDF.
You do not currently have access to this content.