Alzheimer’s is a disease chronic neuro-degenerative progressive disorder in the adult human brain that tends to be old and which causes memory, thought and behavior problems and the most common causes of dementia that usually worsen over time. The microarray data of AD gene expression were taken from six different brain regions size 54675 id probes genes x 161 samples in 74 normal samples and 87 samples affected by Alzheimer’s. The development of microarray technology used in dataset genetic expression includes Alzheimer’s. To discover hidden pattern from microarray of Alzheimer’s gene expression data we propose finding correlated bicluster using FABIA biclustering.

In this paper, we apply the analysis for bicluster acquisition (FABIA) factor technique for gene expression matrix data that has been standardized median centering and normalized, and then this multiplicative method produces two very sparse Laplacian variables with heavy-tailed non-Gaussian signals for the desired bicluster. To measure information on the bicluster we use I / NI. Evaluate the results of our cycle; we use the Jaccard index and the Munkres algorithm which implemented in the Truecluster in the open source R package. From the experimental results, there are nine biclusters formed by data’s AD that can be analyzed.

1.
G.
McLachlan
,
K.
Do
, and
C.
Ambroise
, “Analyzing microarray gene expression data,” (
2005
).
2.
G.
Ardaneswari
,
A.
Bustamam
, and
T.
Siswantining
, “
Implementation of parallel k-means algoritm for two-phase method biclustering in carcinoma tumor gene expression data
,” (
2017
).
3.
A.
Bustamam
,
D.
Sarwinda
, and
G.
Ardenaswari
, “
Texture and gene expression analysis of the mri brain in detection of alzheimers disease
,” in
Journal of Artificial Intelegence and Soft Computing Research
, Vol.
8
(
2
) (
2018
), pp.
111
120
.
4.
A.
Bustamam
,
S.
Formalidin
, and
T.
Siswantining
, “
Clustering and analyzing microarray data of lymphoma using singular value decomposition (svd) and hybrid clustering
,” (
AIP Conference Proceedings
,
2018
).
5.
Frisca
,
A.
Bustamam
, and
T.
Siswantining
, “
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
,” (
AIP Conference Proceedings
, ,
2017
).
6.
W.
Yang
,
D.
Dai
, and
H.
Yan
, “Biclustering of microarray data based on singular value decomposition conference :
Emerging technologies in knowledge discovery and data mining,” (PAKDD 2007
,
International Workshop
,
Nanjing, China
, Revised Selected Papers,
2007
).
7.
A.
Prelic
,
S.
Bleuler
,
P.
Zimmermann
,
A.
Wille
,
P.
Bhlmann
,
W.
Gruissem
,
L.
Hennig
,
L.
Thiele
, and
E.
Zitzler
, “
A systematic comparison and evaluation of biclustering methods for gene expression data
,” (
Bioinfor-matics
,
2006
) p.
11221129
.
8.
Y.
Cheng
and
G. M.
Church
, “
Biclustering of expression data
,” in
In Proc. International Conference on Intelligent Systems for Molecular Biology (ISMB)
, Vol.
8
(
2000
) p.
93103
.
9.
S.
Hochreiter
,
U.
Bodenhofer
,
M.
Heusel
, and
A.
Mayr
, “Fabia : Factor analysis for bicluster acquisition,” (
Oxford University Press
,
2010
), pp.
1520
7
.
10.
D.
Sarwinda
and
A.
Bustamam
, “
Detection of alzheimers disease using advance local binary pattern from hippocampus and whole brain of mr images
,” (
Proceedings of the international Joint Conference on Neural Networks (IJCNN
),
2016
).
11.
W.
Talloen
,
D.
Clevert
,
S.
Hochreiter
,
D.
Amaratunga
,
L.
Bijnens
,
S.
Kass
, and
H. W. H.
Ghlmann
, “
I/ni-calls for the exclusion of non-informative genes: a highly effective feature filtering tool for microarray data
,” (
Bioinformatics
,
2007
) p.
28972902
.
12.
R.
Sumanta
,
H. Sk Md
Mossaddek
,
K.
Lutfunnesa
, and
M.
Anirban
, “
A comprehensive analysis on preservation of gene co-expression during alzheimers disease progression
,” (
BMC Bioinformatics
,
2017
).
13.
T.
Eltoft
,
T.
Kim
, and
T.-W.
Lee
, in
On the multivariate Laplace distribution
, Vol.
13
(
5
) (
IEEE, Signal Processing Letters
, ,
2006
) p.
300303
.
14.
M.
Girolami
, “
A variational method for learning sparse and overcomplete representations
,” (
Neural Computation
,
2001
) p.
25172532
.
15.
J.
Palmer
,
D.
Wipf
,
K.
Kreutz-Delgado
, and
B.
Rao
, “
Variational em algorithms for non-gaussian latent variable models
,” (
Neural Information Processing Systems (NIPS)
,
2006
).
16.
J.
Munkres
, “
Algorithms for the assignment and transportation problems
,” (
Ind. Appl. Math.
,
1957
) p.
3238
.
17.
J.
Oehlschlgel
, “
Truecluster: robust scalable clustering with model selection
,” (arXiv:cs/0601001,
2006
).
This content is only available via PDF.
You do not currently have access to this content.