Analysing and predicting air quality parameters is an important task due to the health impact caused by air pollution. Ground ozone levels are a topic of considerable environmental concern, since excessive levels of ozone indicate high pollution. We develop stochastic models that estimate the ground-level ozone concentrations in air at Pavlovo station in Sofia for the period 2012 - 2016. First, we use the binary logistic regression to predict the probability of occurrence or nonoccurrence of ozone concentrations above or below a threshold (100 µg/m3). Second, in order to model the daily maximum ozone concentrations the Student’s t and gamma distributions are used. The parameters of these distributions are modeled as linear parametric or nonparametric functions. The input predictors include surface and upper air temperature, atmospheric pressure, relative humidity, wind speed and direction, solar radiation, nitric oxide and nitrogen dioxide. The developed models explain the variation in daily ozone maxima and provide reliable tool to predict ozone levels exceeding a relevant threshold.

1.
W.
Wang
,
W.
Lu
,
X.
Wang
, and
AY.
Leung
, “
Prediction of maximum daily ozone level using combined neural network and statistical characteristics
”,
Environment International
29
(
5
),
555
562
(
2003
).
2.
R.L.
Smith
and
T.
Shively
, “
Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold
”,
Atmospheric Environment
29
,
3489
3499
(
1995
).
3.
H.
Kutchenhoff
and
M.
Thamerus
, “
Extreme value analysis of Munich air pollution data
”,
Environmental and Ecological Statistics
,
3
, pp.
127
141
, (
1996
).
4.
E.
Eastoe
and
J.
Tawn
, “
Modelling non-stationary extremes with application to surface level ozone
”,
Appl. Statist.
58
,
25
45
(
2009
).
5.
M. B.
Sexto
,
H. H.
Vaquera
and
B. C.
Arnold
, “
Use of the Dagum distribution for modeling tropospheric ozone levels
”,
Journal of Environmental Statistics
5
(
5
) (
2013
).
6.
A. S.
Luna
,
M. L. L.
Paredes
,
G. C. G.
de Oliveira
and
S. M.
Correa
, “
Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil
”,
Atmospheric Environment
98
,
98
104
(
2014
).
7.
K. P.
Moustris
,
G. T.
Proias
,
I. K.
Larissi
,
P. T.
Nastos
,
K. V.
Koukouletsos
and
A. G.
Paliatsos
, “
Prognosis of maximum daily surface ozone concentration within the greater Athens urban area, Greece
”,
Global NEST Journal
16
(
5
),
873
882
(
2014
).
8.
R Development Core Team
:
A Language and Environment for Statistical Computing, R Foundation for Statistical Computing
,
Vienna, Austria
, ISBN 3-900051-07-0, (
2013
).
9.
S.
Wood
, “
Generalized additive models. An introduction with R”
,
CRC Chapman Hall
, 2nd ed., (
2017
).
10.
T. W.
Yee
, “
Vector Generalized Linear and Additive Models With an Implementation in R.”
,
Springer-Verlag New York
, (
2015
).
11.
T.
Sing
,
O.
Sander
,
N.
Beerenwinkel
and
T.
Lengauer
, “
ROCR: visualizing classifier performance in R
”,
Bioinformatics APPLICATIONS NOTE
21
(
20
),
3940
3941
(
2005
).
12.
T.
Fawcett
, “ROC graphs: notes and practical considerations for researchers”,
Technical Report HPL-2003-4. HP Labs
,
Palo Alto, CA
, (
2004
).
13.
D.
Syrakov
,
I.
Etropolska
,
M.
Prodanova
,
K.
Slavov
,
K.
,
Ganev
,
N.
Miloshev
, and
T.
Ljubenov
, “
Downscaling of Bulgarian chemical weather forecast from Bulgaria region to Sofia city
”. In:
AIP Conference Proceedings
1561
,
120
doi: online:, (
2013
).
This content is only available via PDF.
You do not currently have access to this content.