An inductive algorithm is presented for smooth approximation of functions based on the Tikhonov regularization method. The discrepancy principle is used for estimating the optimal value of the smoothing parameter. The principle of heuristic self-organization is applied for assessment of some parameters and the optimal complexity of the approximating function. In this paper the efficiency of this algorithm was investigated for different kind of the Tikhonov parametric functional using model functions distorted by additive Gaussian noise simulated by a random numbers generator.

1.
A.
Talmi
and
G.
Gilat
.,
J. Comp. Phys
23
,
93
123
(
1977
).
2.
A.G.
Ivakhnenko
,
Automatica
,
6
,
207
210
(
1970
).
3.
Beer
S.
,
Cybernetics and Management
(
The English Universities Press LTD
,
London
) (
1967
).
4.
V.
Stoyanova
,
D.
Kashchiev
and
T.
Kupenova
,
J. Aerosol Sci.
,
25
, No.
5
,
867
877
(
1994
).
5.
T.
Kupenova
and
P.
Kupenova
in
Proceedings of 5-th General Conference of the Balkan Physical Union BPU5
, edited by. S. Jokicet et al., (
Serbian Physical Society
,
Belgrade
),
1475
1478
(
2003
).
6.
V.
Stoyanova
and
T.
Kupenova
,
Compt. Rend. Acad. Bulg. Sci.
,
60
, No.
5
,
545
550
(
2007
).
7.
P.
Kupenova
,
E.
Popova
, and
L.
Vitanova
.
Vision Res.
,
48
,
882
892
(
2008
).
8.
T. N.
Kupenova
, E11-2011-97,
Commun
.
JINR
,
Dubna
, (
2011
).
9.
T.
Kupenova
,
Matem. Mod.
,
26
:
11
,
78
82
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.