We consider static traversable wormhole solutions to the Einstein-Maxwell-dilaton equations with a phantom scalar field and a possible phantom electromagnetic field. For certain asymptotic values of the lapse function and the scalar field there is a unique solution. This solution is completely determined by its asymptotic charges – mass M+, scalar charge q+ and electric charge Q̃+. The proof is based on the positive energy theorem.

1.
M. S.
Morris
and
K. S.
Thorne
,
Am. J. Phys.
56
,
395
412
(
1988
);
M.
Visser
,
Lorentzian wormholes: From Einstein to Hawking
(
Woodbury, New York
,
1996
).
2.
E.
Teo
,
Phys. Rev.
D58
,
024014
(
1998
).
3.
D.
Hochberg
and
M.
Visser
,
Phys. Rev. Lett.
81
,
746
(
1998
).
4.
H. G.
Ellis
,
J. Math. Phys.
14
,
104
(
1973
);
K.
Bronnikov
,
Acta Phys. Polon.
B4
,
251
(
1973
);
H. G.
Ellis
,
Gen. Rel. Grav.
10
,
105
123
(
1979
);
P. E.
Kashargin
and
S. V.
Sushkov
,
Grav. Cosmol.
14
,
80
(
2008
);
P. E.
Kashargin
and
S. V.
Sushkov
,
Phys. Rev.
D78
,
064071
(
2008
);
B.
Kleihaus
and
J.
Kunz
,
Phys. Rev.
D90
,
121503(R)
(
2014
);
M.
Zhou
,
A.
Cardenas-Avendano
,
C.
Bambi
,
B.
Kleihaus
and
J.
Kunz
,
Phys. Rev.
D94
,
024036
(
2016
);
N.
Tsukamoto
,
Phys. Rev.
D94
,
124001
(
2016
);
K.
Nandi
,
A.
Potapov
,
R.
Izmailov
,
A.
Tamang
and
J.
Evans
,
Phys. Rev.
D93
,
104044
(
2016
);
X.
Chew
,
B.
Kleihaus
and
J.
Kunz
,
Phys. Rev.
D94
,
104031
(
2016
);
G.
Gibbons
and
M.
Volkov
,
Phys.Lett.
B760
,
324
(
2016
);
G.
Gibbons
and
M.
Volkov
,
JCAP 1705
, No.
05
,
039
(
2017
).
5.
P.
Kanti
,
B.
Kleihaus
, and
J.
Kunz
,
Phys. Rev. Lett.
107
,
271101
(
2011
);
[PubMed]
P.
Kanti
,
B.
Kleihaus
, and
J.
Kunz
,
Phys. Rev.
D85
,
044007
(
2012
);
N.
Montelongo Garcia
, and
F.
Lobo
,
Class. Quantum Grav.
28
,
085018
(
2011
);
T.
Harko
,
F.
Lobo
,
M.
Mak
,
S.
Sushkov
,
Phys. Rev.
D87
,
067504
(
2013
).
6.
S.
Yazadjiev
,
Phys. Rev.
D96
044045
(
2017
).
7.
B.
Lazov
,
P.
Nedkova
,
S.
Yazadjiev
, “
Uniqueness theorem for static phantom wormholes in Einstein-Maxwell-dilaton theory
”,
Phys. Lett.
B778
,
408
413
(
2018
).
8.
R.
Schoen
and
S. T.
Yau
,
Comm. Math. Phys.
,
65
(
1
),
45
(
1979
);
R.
Bartnik
,
Comm. Pure App. Math.
,
39
(
5
),
661
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.