We consider static traversable wormhole solutions to the Einstein-Maxwell-dilaton equations with a phantom scalar field and a possible phantom electromagnetic field. For certain asymptotic values of the lapse function and the scalar field there is a unique solution. This solution is completely determined by its asymptotic charges – mass M+, scalar charge q+ and electric charge Q̃+. The proof is based on the positive energy theorem.
REFERENCES
1.
M. S.
Morris
and K. S.
Thorne
, Am. J. Phys.
56
, 395
–412
(1988
);2.
3.
D.
Hochberg
and M.
Visser
, Phys. Rev. Lett.
81
, 746
(1998
).4.
H. G.
Ellis
, J. Math. Phys.
14
, 104
(1973
);H. G.
Ellis
, Gen. Rel. Grav.
10
, 105
–123
(1979
);P. E.
Kashargin
and S. V.
Sushkov
, Grav. Cosmol.
14
, 80
(2008
);M.
Zhou
, A.
Cardenas-Avendano
, C.
Bambi
, B.
Kleihaus
and J.
Kunz
, Phys. Rev.
D94
, 024036
(2016
);K.
Nandi
, A.
Potapov
, R.
Izmailov
, A.
Tamang
and J.
Evans
, Phys. Rev.
D93
, 104044
(2016
);G.
Gibbons
and M.
Volkov
, Phys.Lett.
B760
, 324
(2016
);G.
Gibbons
and M.
Volkov
, JCAP 1705
, No. 05
, 039
(2017
).5.
N.
Montelongo Garcia
, and F.
Lobo
, Class. Quantum Grav.
28
, 085018
(2011
);6.
7.
B.
Lazov
, P.
Nedkova
, S.
Yazadjiev
, “Uniqueness theorem for static phantom wormholes in Einstein-Maxwell-dilaton theory
”, Phys. Lett.
B778
, 408
–413
(2018
).8.
R.
Schoen
and S. T.
Yau
, Comm. Math. Phys.
, 65
(1
), 45
(1979
);R.
Bartnik
, Comm. Pure App. Math.
, 39
(5
), 661
(1986
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.