A novel approach for visualizing the data sets using rational biquadratic trigonometric fractal interpolation functions (RBTFIFs) is presented. The theorems concerning existence and uniqueness of RBTFIF satisfying the C1-continuity condition are obtained. The uniform error bound between original function and interpolated fractal surface is also discussed.
Topics
Trigonometry
REFERENCES
1.
G.E.
Farin
, Curves and surfaces for computer aided geometric design — a practical guide
, (Academic Press, Inc.
, vol. 31
. 4th ed. Orlando, FL, USA
, 1989
).2.
X.
Han
, Comput Aided Geom Des.
, 19
, 503
–512
(2002
).3.
M.
Hussain
and S.
Saleem
, Egypt Informatics J
, 14
, 211
–20
(2013
).4.
U.
Bashir
and J. M.
Ali
, “A rational trigonometric spline to visualize positive data
,” in National Symposium on Mathematical Sciences (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability-21
, AIP Conference Proceedings
1605
, edited by M. T.
Ismail
, et al (American Institute of Physics
, Penang, Malaysia
, 2014
), pp. 286
–91
.5.
F.
Hussain
and M.
Sarfraz
, “Shape Preserving Quadratic Trigonometric Spline Curves
,” in Comput Graph Imaging Vis (CGIV), 11th Int Conf 2014
, pp. 17
–22
.6.
M. F.
Barnsley
, Constr. Approx.
2
, 303
–29
(1986
).7.
M. F.
Barnsley
and A. N.
Harrington
, J. Approx. Theory
, 57
, 14
–34
(1989
).8.
9.
D. S.
Mazel
and M. H.
Hayes
, IEEE Trans. Signal Process.
40
, 1724
–34
(1992
).10.
L.
Dalla
and V.
Drakopoulos
, J. Approx. Theory
, 101
, 289
–302
(1999
).11.
E.
Guerin
, E.
Tosan
and A.
Baskurt
, “Fractal coding of shapes based on a projected IFS model
,” in Proc 2000 Int Conf Image Process (Cat No00CH37101
) 2000
, pp. 203
–206
.12.
M. A.
Navascues
, Electron Trans. Numer. Anal.
20
, 64
–74
(2005
).13.
P.
Manousopoulos
, V.
Drakopoulos
and T.
Theoharis
, Trans. Comput. Sci. I
, LNCS 4750
, 85
–103
(2008
).14.
B.
Prasad
, B.
Singh
and K.
Katiyar
, Int. J. Comput. Appl.
ICCIA
, 5
–8
(2012
).15.
B.
Prasad
, B.
Singh
and K.
Katiyar
, “Fractal interpolation via Mann iteration
,” in Proc of Int. Conf. Comput. Commun
. 2012
, pp. 369
–73
.16.
B.
Prasad
, B.
Singh
and K.
Katiyar
, Modeling Curves via Fractal Interpolation with VSFF
,” in IJCA Proc Int. Conf. Adv. Comput. Eng. Appl. 2014, ICACEA
, pp. 26
–9
.17.
B.
Prasad
, K.
Katiyar
and B.
Singh
, Int. J. Appl. Eng. Res.
10
, 37290
–37302
(2015
).18.
B.
Prasad
and K.
Katiyar
, “Shape preserving trigonometric fractal interpolation,” in Mathematical Sciences And Its Applications
, AIP Conference Proceedings
1802
, edited by B. P.
Chamola
and P.
Kumari
(American Institute of Physics
, 2017
), pp. 020007-1
–8
.19.
B.
Prasad
and K.
Katiyar
, “Construction of RFIF using VVSFs with application
,” in Advancement In Mathematical Sciences: Proceedings of the 2nd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2017
), AIP Conference Proceedings
1897
, edited by B. P.
Chamola
and P.
Kumari
(American Institute of Physics
, 2017
), pp. 020027-1
–8
.20.
21.
J.
Geronimo
and D.
Hardin
, J. Math Anal. Appl.
176
, 561
–586
(1993
).22.
23.
H.
Xie
and H.
Sun
, Fractals
05
, 625
–34
(1997
).24.
H.
Xie
, H.
Sun
, Y.
Zu
and Z.
Feng
, Int. J. Solids Struc.
38
, 5765
–5787
(2001
).25.
26.
R.
Małysz
, Chaos, Solitons and Fractals
, 27
, 1147
–56
(2006
).27.
Z.
Feng
,Y.
Feng
and Z.
Yuan
, Appl. Math. Lett.
25
, 1896
–900
(2012
).28.
J.
Ji
and J.
Peng
, Int. J. Comput. Math
90
, 539
–553
(2013
).29.
B.
Prasad
and K.
Katiyar
, “A hidden variable fractal interpolation surface method,” in Int. Conf. Inf. Math. Sci
., Elsevier
India
; 2013
, edited by Gupta
M
, Goyal
M
, pp. 156
–158
.30.
A. K. B.
Chand
and N.
Vijender
, Calcolo
, 52
, 1
–24
(2015
).31.
J. A.
Gregory
, and R.
Delbourgo
., IMA J. Numer. Anal.
2
, 123
–30
(1982
).
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.