A novel approach for visualizing the data sets using rational biquadratic trigonometric fractal interpolation functions (RBTFIFs) is presented. The theorems concerning existence and uniqueness of RBTFIF satisfying the C1-continuity condition are obtained. The uniform error bound between original function and interpolated fractal surface is also discussed.

1.
G.E.
Farin
,
Curves and surfaces for computer aided geometric design — a practical guide
, (
Academic Press, Inc.
, vol.
31
. 4th ed.
Orlando, FL, USA
,
1989
).
2.
X.
Han
,
Comput Aided Geom Des.
,
19
,
503
512
(
2002
).
3.
M.
Hussain
and
S.
Saleem
,
Egypt Informatics J
,
14
,
211
20
(
2013
).
4.
U.
Bashir
and
J. M.
Ali
, “
A rational trigonometric spline to visualize positive data
,” in
National Symposium on Mathematical Sciences (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability-21
,
AIP Conference Proceedings
1605
, edited by
M. T.
Ismail
, et al
(
American Institute of Physics
,
Penang, Malaysia
,
2014
), pp.
286
91
.
5.
F.
Hussain
and
M.
Sarfraz
, “
Shape Preserving Quadratic Trigonometric Spline Curves
,” in
Comput Graph Imaging Vis (CGIV), 11th Int Conf 2014
, pp.
17
22
.
6.
M. F.
Barnsley
,
Constr. Approx.
2
,
303
29
(
1986
).
7.
M. F.
Barnsley
and
A. N.
Harrington
,
J. Approx. Theory
,
57
,
14
34
(
1989
).
8.
M. F.
Barnsley
,
Fractals everywhere
(
Academic Press
, Second ed.
2000
).
9.
D. S.
Mazel
and
M. H.
Hayes
,
IEEE Trans. Signal Process.
40
,
1724
34
(
1992
).
10.
L.
Dalla
and
V.
Drakopoulos
,
J. Approx. Theory
,
101
,
289
302
(
1999
).
11.
E.
Guerin
,
E.
Tosan
and
A.
Baskurt
, “
Fractal coding of shapes based on a projected IFS model
,” in
Proc 2000 Int Conf Image Process (Cat No00CH37101
)
2000
, pp.
203
206
.
12.
M. A.
Navascues
,
Electron Trans. Numer. Anal.
20
,
64
74
(
2005
).
13.
P.
Manousopoulos
,
V.
Drakopoulos
and
T.
Theoharis
,
Trans. Comput. Sci. I
,
LNCS 4750
,
85
103
(
2008
).
14.
B.
Prasad
,
B.
Singh
and
K.
Katiyar
,
Int. J. Comput. Appl.
ICCIA
,
5
8
(
2012
).
15.
B.
Prasad
,
B.
Singh
and
K.
Katiyar
, “
Fractal interpolation via Mann iteration
,” in
Proc of Int. Conf. Comput. Commun
.
2012
, pp.
369
73
.
16.
B.
Prasad
,
B.
Singh
and
K.
Katiyar
,
Modeling Curves via Fractal Interpolation with VSFF
,” in
IJCA Proc Int. Conf. Adv. Comput. Eng. Appl. 2014, ICACEA
, pp.
26
9
.
17.
B.
Prasad
,
K.
Katiyar
and
B.
Singh
,
Int. J. Appl. Eng. Res.
10
,
37290
37302
(
2015
).
18.
B.
Prasad
and
K.
Katiyar
, “Shape preserving trigonometric fractal interpolation,” in
Mathematical Sciences And Its Applications
,
AIP Conference Proceedings
1802
, edited by
B. P.
Chamola
and
P.
Kumari
(
American Institute of Physics
,
2017
), pp.
020007-1
8
.
19.
B.
Prasad
and
K.
Katiyar
, “
Construction of RFIF using VVSFs with application
,” in
Advancement In Mathematical Sciences: Proceedings of the 2nd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2017
),
AIP Conference Proceedings
1897
, edited by
B. P.
Chamola
and
P.
Kumari
(
American Institute of Physics
,
2017
), pp.
020027-1
8
.
20.
J. C.
Russ
,
Fractal Surface
(
Springer-Verlag
US
,
1994
).
21.
J.
Geronimo
and
D.
Hardin
,
J. Math Anal. Appl.
176
,
561
586
(
1993
).
22.
N.
Zhao
,
Vis. Comput.
,
12
,
132
46
(
1996
).
23.
H.
Xie
and
H.
Sun
,
Fractals
05
,
625
34
(
1997
).
24.
H.
Xie
,
H.
Sun
,
Y.
Zu
and
Z.
Feng
,
Int. J. Solids Struc.
38
,
5765
5787
(
2001
).
25.
L.
Dalla
,
Fractals
,
10
,
53
58
(
2002
).
26.
R.
Małysz
,
Chaos, Solitons and Fractals
,
27
,
1147
56
(
2006
).
27.
Z.
Feng
,
Y.
Feng
and
Z.
Yuan
,
Appl. Math. Lett.
25
,
1896
900
(
2012
).
28.
J.
Ji
and
J.
Peng
,
Int. J. Comput. Math
90
,
539
553
(
2013
).
29.
B.
Prasad
and
K.
Katiyar
, “A hidden variable fractal interpolation surface method,” in
Int. Conf. Inf. Math. Sci
.,
Elsevier
India
;
2013
, edited by
Gupta
M
,
Goyal
M
, pp.
156
158
.
30.
A. K. B.
Chand
and
N.
Vijender
,
Calcolo
,
52
,
1
24
(
2015
).
31.
J. A.
Gregory
, and
R.
Delbourgo
.,
IMA J. Numer. Anal.
2
,
123
30
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.