In this study, an SEIR epidemic model is considered and studied that incorporates the effect of delay in information dependent self-protection along with the effect of screening and saturated treatment. The proposed model is analysed and stability of equilibria is established. The local asymptotic stability of the disease free equilibrium is ensured for R0 < 1 and it is unstable otherwise. Whereas, for R0 > 1, the proposed model has the unique endemic equilibrium point. In addition, under some parametric conditions, the model has also two endemic equilibria for the case R0 < 1. For all delay values, the local asymptotic stability of the unique endemic equilibrium is established under some parametric constraints. Further, the occurrence of the periodic oscillations is also observed when the delay crosses a threshold value via Hopf bifurcation.

1.
A.
Gupta
,
C.
Moyer
, and
D.
Stern
,
J. Infect.
50
,
386
393
(
2005
).
2.
S.
Russell
,
Am. J. Trop. Med. Hyg.
71
,
147
155
(
2004
).
3.
B.
Armbruster
and
M.
Brandeau
,
Math. Biosci.
209
,
386
402
(
2007
).
4.
H.
Gaff
and
E.
Schaefer
,
Math. Biosci. Eng.
6
,
469
492
(
2009
).
5.
H.
Hethcote
,
SIAM Review
42
,
599
653
(
2000
).
6.
S.
Kassa
and
A.
Ouhinou
,
J. Math. Biol.
70
,
213
236
(
2015
).
7.
A.
Kumar
and
P.
Srivastava
,
Commun. Nonlinear Sci. Numer. Simul.
44
,
334
343
(
2017
).
8.
S.
Lee
,
G.
Chowell
, and
C.
Castillo-Chávez
,
J. Theor. Biol.
265
,
136
150
(
2010
).
9.
X.
Liu
,
Y.
Takeuchi
, and
S.
Iwami
,
J. Theor. Biol.
253
,
1
11
(
2008
).
10.
I.
Zeiler
,
J.
Caulkins
,
D.
Grass
, and
G.
Tragler
,
SIAM J. Control Optim.
48
,
3698
3707
(
2010
).
11.
A.
Ahituv
,
V.
Hotz
, and
T.
Philipson
,
J. Hum. Resour.
31
,
869
897
(
1996
).
12.
T.
Philipson
,
J. Hum. Resour.
31
,
611
630
(
1996
).
13.
J.
Cui
,
X.
Tao
, and
H.
Zhu
,
Rocky Mt. J. Math.
38
,
1323
1334
(
2008
).
14.
A.
d’Onofrio
and
P.
Manfredi
,
J. Theor. Biol.
256
,
473
478
(
2009
).
15.
A.
d’Onofrio
,
P.
Manfredi
, and
E.
Salinelli
,
Theor. Popul Biol.
71
,
301
317
(
2007
).
16.
S.
Funk
,
E.
Gilad
, and
V.
Jansen
,
J. Theor. Biol.
264
,
501
509
(
2010
).
17.
A.
Kumar
,
P.
Srivastava
, and
Y.
Takeuchi
,
J. Theor. Biol.
414
,
103
119
(
2017
).
18.
Y.
Liu
and
J.
Cui
,
Int. J. Biomath.
1
,
65
74
(
2008
).
19.
A.
Misra
,
A.
Sharma
, and
J.
Shukla
,
Math. Comput. Modell.
53
,
1221
1228
(
2011
).
20.
A.
Yadav
,
P.
Srivastava
, and
A.
Kumar
,
Int. J. Biomath.
8
, p.
1550001
(14 pages) (
2015
).
21.
A.
Gumel
,
S.
Ruan
, et al,
Proceedings of the Royal Society of London. Series B: Biological Sciences
271
,
2223
2232
(
2004
).
22.
M.
Kim
and
F.
Milner
,
Math. Comput. Modell.
21
,
29
42
(
1995
).
23.
H.
Lee
,
W.
Pierskalla
, and
G.
Rand
,
Oper. Res.
87
,
428
441
(
1988
).
24.
B.
Dubey
,
A.
Patra
,
P.
Srivastava
, and
U.
Dubey
,
J. Biol. Syst.
21
(
2013
).
25.
X.
Zhang
and
X.
Liu
,
J. Math. Anal. Appl.
348
,
433
443
(
2008
).
26.
X.
Zhang
and
X.
Liu
,
Nonlinear Anal.: Real World Applications
10
,
565
575
(
2009
).
27.
L.
Zhou
and
M.
Fan
,
Nonlinear Anal.: Real World Applications
13
,
312
324
(
2012
).
28.
P.
Manfredi
and
A.
D’Onofrio
,
Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases
(
Springer Science & Business Media
,
2013
).
29.
A.
Kumar
and
P.
Srivastava
,
Communicated in Journal
(
2018
).
30.
P.
Lawrence
,
Differential Equations and Dynamical Systems
(
Springer-Verlag
,
New York
,
1991
).
31.
S.
Ruan
and
J.
Wei
,
Dynam. Contin. Discrete Impuls. Systems A
10
,
863
874
(
2003
).
32.
H.
Freedman
and
V. Sree Hari
Rao
,
Bull. Math. Biol.
45
,
991
1004
(
1983
).
33.
J.
Hale
,
Functional Differential Equations
(
Springer
,
New York
,
1977
).
This content is only available via PDF.
You do not currently have access to this content.