The vibrations of bi-directional circular FGM plate under uniform in-plane force are investigated on the base of Kirchhoff’s plate theory. Generalized differential quadrature method is applied to get the solution of obtained differential equation representing the equation of motion. The mechanical properties are varying in the thickness as well as in radial direction and described by a power-law. The results for different parameters have been analysed on first three frequencies. Comparison studies are performed to verify the present results.

1.
M.
Koizumi
,
Ceramic Transactions, Functionally Gradient Materials.
34
,
3
10
, (
1993
).
2.
Y.
Miyamoto
,
W. A.
Kaysser
,
B.H.
Rabin
,
A.
Kawasaki
, and
R. G.
Ford
. “
Functionally Graded Materials: Design, Processing and Applications
” (Vol.
5
),
Springer Science and Business Media
, (
2013
).
3.
V.
Birman
,
T.
Keil
, and
S.
Hosder
. “Functionally graded materials in engineering.”
Structural Interfaces and Attachments in Biology
,
19
41
, (
2013
),
Springer
New York
.
4.
G
Nie
, and
Z.
Zhong
,
Appl. Math. Model.
,
34
(
3
),
608
16
, (
2010
).
5.
A. H.
Baferani
,
A. R.
Saidi
, and
E.
Jomehzadeh
,
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
225
(
3
),
526
36
, (
2011
).
6.
P.
Zhu
, and
K.M.
Liew
,
Procedia Engineering.
31
,
1089
94
, (
2012
).
7.
D.
Shi
,
Q.
Wang
,
X.
Shi
, and
F.
Pang
,
Shock Vib.
Article ID 572395,
1
25
, (
2014
).
8.
R.
Rezaei
,
A. R.
Shaterzadeh
, and
S.
Abolghasemi
,
J. Solid Mech.
7
(
1
),
41
57
, (
2015
).
9.
Q.
Wang
,
D.
Shi
,
Q.
Liang
,
X.
Shi
,
Compos. Part B-Eng.
88
,
264
94
, (
2016
).
10.
S.
Kumar
,
V.
Ranjan
, and
P.
Jana
,
Compos. Struct.
197
,
39
53
(
2018
).
11.
V. N.
Van Do
. “A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method.”
IOP Conference Series: Earth and Environmental Science
.
143
,
IOP Publishing
, (
2018
).
12.
U. S.
Gupta
, and
A.H.
Ansari
,
J. Sound Vib.
,
215
(
2
),
231
250
(
1998
).
13.
A.S.
Vol’mir
, “
Stability of elastic systems
.”
FTD-MT-64-335, WP-FB
,
Ohio
(
1966
).
14.
G. C.
Pardoen
,
Comput. Struct.
9
(
1
),
89
95
(
1978
).
15.
A. W.
Leissa
,
Vibration of plates
. NASA SP. 160,
Washington
(
1969
)
16.
T. Y.
Wu
,
Y. Y.
Wang
, and
G. R.
Liu
,
Comput. Meth. Appl. Mech. Eng.
191
,
5365
5380
(
2002
).
17.
R.
Lal
, and
N.
Ahlawat
,
J. Vib. Control
,
23
(
13
),
2111
2127
(
2017
).
18.
B.
Singh
, and
V.
Saxena
,
J. Sound Vib.
,
179
(
5
),
879
97
(
1995
).
19.
A.
Selmane
, and
A. A.
Lakis
,
J. Sound Vib.
,
220
(
2
),
225
249
(
1999
).
20.
M.
Eisenberger
, and
M.
Jabareen
.
Int. J. Struct. Stab. Dy.
,
1
(
02
),
195
206
(
2001
).
21.
M.
Shariyat
,
M. M.
Alipour
.
Arch. Appl. Mech.
81
(
9
),
1289
306
, (
2011
).
This content is only available via PDF.
You do not currently have access to this content.