This article presents the numerical simulation of three linearly coupled oscillators, which are connected to form the circadian rhythms for analysing the motion of eyes. In this system of circadian rhythms, each eye is modeled as van der Pol oscillators and both such oscillators are not directly interconnected but connected through another similar oscillator. This oscillator models the pineal gland, which is responsible for linkage with brain muscles. The van der Pol oscillators are coupled with such couplings, where non-linear damping parameters are also included in this system. The dynamics is determined analytically through a novel approach of extended Poincaré-Cartan Invariants of Lagrangian theory, which demonstrates the invariance of Poincare integral in three-dimensional phase space. The synchronization dynamics is achieved with in-phase and out of phase motions of oscillators with varying parameters. In this analysis, the effect of injected signal is also analyzed by adding some detuning parameter considering the associated boundaries of the stable synchronized states. This analysis is corroborated with simulation results to visualize the dynamical behaviour.

1.
J. D.
Murray
,
Mathematical Biology
(
Springer-Verlag
,
New York
,
1993
)
2.
E.
Camacho
,
R.
Rand
,
H.
Howland
,
Int. J. Solids Struc.
41
,
2133
2143
(
2004
).
3.
R.H.
Rand
and
P. J.
Holmes
,
Int. J. Non-Linear Mech.
15
,
387
399
(
1980
).
4.
Q.
Bi
,
Int. J. Non-Linear Mech.
39
,
309
323
(
2004
).
5.
H. K.
Leung
,
Physics A
,
321
,
248
255
(
2003
).
6.
A.
Maccari
,
Int. J. Non-Linear Mech.
36
,
335
347
(
2001
).
7.
D.W.
Storti
, and
R.H.
Rand
,
Int. J. Non-Linear Mech.
17
,
143
152
(
1982
).
8.
D.W.
Storti
,
C.
Nevrinceanu
, and
P. G.
Reinhall
,
Dyna. Vib. Time-varying sys. Struc. (ASME)
,
56
,
397
402
(
1993
).
9.
D.W.
Storti
, and
P.G.
Reinhall
,
Stab. Vib. Cont. Syst
2(B)
,
1
23
(
1995
).
10.
D.W.
Storti
, and
P.G.
Reinhall
,
Int. J. Bifur. Chaos Appl. Sc. Engg.
,
8
,
2353
2373
(
2000
).
11.
Z. P.
Li
, and
X.
Li
,
Int. J. Theor. Phy.
29
,
765
771
(
1990
).
12.
F.
Benavent
and
J.
Gomis
,
Anal. Phy.
,
118
(
2
),
476
489
(
1979
).
13.
D.
Liu
,
Y.
Luo
,
S. Y.
Xin
,
Acta Mech. Sinica
7
,
178
185
(
1991
).
14.
Y. X.
Guo
,
M.
Shang
and
F.X.
Mei
,
Int. J. Theor. Physics
,
38
(
3
),
1017
1027
(
1999
).
15.
Y. X.
Guo
,
L.
Jiang
and
Y.
Yu
,
Comm. Nonlinear Sc. Num. Simul.
6
(
1
),
45
49
(
2001
).
16.
Y. X.
Guo
,
M.
Shang
,
S. K.
Luo
and
F. X.
Mei
,
Int. J. Theor. Physics
,
40
(
6
),
1197
1205
(
1999
).
17.
A.
Mukherjee
,
V.
Rastogi
and
A.
Dasgupta
,
Int. J. Non-Linear Mech.
46
,
745
757
(
2011
).
18.
K.
Rompala
,
R.
Rand
and
H.
Howland
,
Comm. Nonlinear Sc. Num. Simul.
12
,
794
803
(
2007
).
19.
A.
Mukherjee
,
V.
Rastogi
, and
A. Das
Gupta
,
Simulation
,
83
(
9
),
611
630
(
2007
).
20.
A.
Mukherjee
, “
Junction Structures of Bondgraph Theory from Analytical Mechanics Viewpoint
”,
Proceedings. of CISS-1st Conference of International Simulation Societies
,
Zurich, Switzerland
, pp.
661
666
, (
1994
).
21.
A.
Mukherjee
, and
R.
Karmakar
, Modelling and Simulation of Engineering System through Bondgraphs (
Narosa Publishing House
,
New Delhi
, reprinted by CRC press for North America and by Alpha Science for Europe,
2000
).
22.
F.
Gantmachar
,
Lectures in Analytical Mechanics
(
Mir Publication
,
Moscow
,
1970
).
23.
A.
Mukherjee
, and
A.K.
Samantaray
, SYMBOLS-Sonata, User’s Manual,
High-Tech Consultants, STEP Indian Institute of Technology
,
Kharagpur, India
,
2005
.
24.
L.
Herrera
,
O.
Montano
and
Y.
Orlov
,
Nonlinear Anal. Hybrid Systems
,
26
,
225
238
(
2017
)
25.
L.
Cveticanin
,
Comm. Nonlinear Sc. Num. Simul.
,
19
,
3362
3373
(
2017
)
26.
M. A.
Barron
,
J. Appl. Res. Tech.
,
14
,
62
66
(
2016
)
This content is only available via PDF.
You do not currently have access to this content.