A coupled spectral and boundary element method based on Helmholtz equation for shallow water wave is presented in this paper. This combine method fulfils the advantage of both the methods, spectral discretization of the boundary using the Chebyshev’s polynomial and boundary integral equation which satisfy the Somerfield radiation boundary condition. The model validation has been performed on rectangular harbor for which the experimental, theoretical and analytical simulations already exist. The present model is implemented to estimate the wave amplification for various directional incoming waves propagating towards the realistic ports such as Paradip Port, Odisha, India and Pohang New harbor (PNH), Pohang, South Korea under the resonance conditions. The reliable simulation results suggest that the present numerical scheme is competent and can be implemented on any realistic harbor for estimation of wave behavior.

1.
W.J.
Plant
and
G.
Farquharson
,
J. Geophys. Res. Ocean.
117
,
1
(
2012
).
2.
A.
Van Dongeren
,
A.
Reniers
,
J.
Battjes
, and
I.
Svendsen
,
J. Geophys. Res.
108
,
1
(
2003
).
3.
E.
Gagnaire-Renou
,
M.
Benoit
, and
P.
Forget
,
J. Geophys. Res. Ocean.
115
, (
2010
).
4.
X.
Xing
,
Computer Modeling for Wave Oscillation Problems in Harbors and Coastal Regions
,
2009
.
5.
P.
Kumar
and
Gulshan
,
Pure Appl. Geophys.
174
,
4501
(
2017
).
6.
M.
Isaacson
and
S.
Qu
,
Coast. Eng.
14
,
193
(
1990
).
7.
P.
Kumar
and
Gulshan
,
Ocean Eng.
164
,
13
(
2018
).
8.
R.N.
Zadeh
and
H.B.
Bingham
, in
Int. Work. Water Waves Float. Bodies
(
2010
).
9.
C.C.
Mei
and
H.S.
Chen
,
Int. J. Numer. Methods Eng.
10
,
1153
(
1976
).
10.
T.K.
Tsay
,
W.
Zhu
, and
P.L.F.
Liu
,
Appl. Ocean Res.
11
,
33
(
1989
).
11.
J.R.
Houston
,
Appl. Ocean Res.
3
,
163
(
1981
).
12.
P.
Kumar
and
Rupali
,
Ocean Eng.
165
,
386
(
2018
).
13.
P.
Kumar
,
Rajni
, and
Rupali
, in
J. Phys.
(
2018
).
14.
R.P.
Shaw
and
W.
Falby
,
Comput. Fluids
6
,
153
(
1978
).
15.
L.
Kielhorn
,
T.
Ruberg
, and
J.
Zechner
,
COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. Artic. Inf.
36
,
1540
(
2017
).
16.
T.
Belytschko
,
H.S.
Chang
, and
Y.Y.
Lu
,
Comput. Struct.
33
,
17
(
1989
).
17.
A.
Hauguel
, in
16th Int. Conf. Coast. Eng.
(
1978
), pp.
715
721
.
18.
O.Z.
Mehdizadeh
and
M.
Paraschivoiu
,
J. Comput. Phys.
189
,
111
(
2003
).
19.
Y.
He
,
M.
Min
, and
D.P.
Nicholls
,
J. Sci. Comput.
68
,
772
(
2016
).
20.
P.
Kumar
,
H.
Zhang
,
K.I.
Kim
,
Y.
Shi
, and
D.A.
Yuen
,
Comput. Fluids
108
,
13
(
2015
).
21.
P.
Kumar
,
H.
Zhang
,
D.A.
Yuen
, and
K.I.
Kim
,
Comput. Fluids
88
,
287
(
2013
).
22.
Y.H.
Geng
,
G.L.
Qin
, and
J.Z.
Zhang
,
Sadhana - Acad. Proc. Eng. Sci.
43
, (
2018
).
23.
A.
Bueno-Orovio
,
V.M.
Perez-Garcia
, and
F.H.
Fenton
,
28
,
886
(
2004
).
24.
P.E.J.
Vos
,
S.J.
Sherwin
, and
R.M.
Kirby
,
J. Comput. Phys.
229
,
5161
(
2010
).
25.
A.
Cerrato
,
L.
Rodríguez-Tembleque
,
J.A.
González
, and
M.H.
FerriAliabadi
,
Appl. Math. Model.
48
,
1
(
2017
).
26.
Y.
Ippen
,
Arthur
T
and
Goda
, (
1963
).
27.
J.J.
Lee
,
Wave-Induced Oscillations in Harbours of Arbitrary Geometry
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.