In this work, by implementing the generalized (GG2)-expansion method, we present exact solutions of a completely integrable model namely; Whitham-Broer-Kaup (WBK) equations. The considered equation describes the small amplitude regime for dispersive long waves in shallow water. The solutions are obtained in terms of exponential functions, trigonometric functions and rational functions. Moreover, by selecting arbitrary constants appropriately in the solutions, we discovered various interesting periodic soliton structures. Also, innovative as well as distinct exact solutions raised in this paper may hold powerful applications in various fields of mathematical physics.

1.
C.
Zhang
,
B.
Tian
,
X. H.
Meng
,
X.
Lu
,
K. J.
Cai
, and
T.
Geng
,
Z. Naturforsch. A
63
,
253
260
(
2008
).
2.
L.
Ji
,
X. Y.
Sheng
, and
W. F.
Min
,
Chinese Phys.
12
,
1049
1053
(
2003
).
3.
S.
Murata
,
Int. J. Non Linear Mech.
41
,
242
246
(
2006
).
4.
F.
Engui
and
Z.
Hongqing
,
Appl. Math. Mech.
19
,
713
716
(
1998
).
5.
Y.
Chen
,
Q.
Wang
, and
B.
Li
,
Chaos Solitons Fract.
26
,
231
246
(
2005
).
6.
Z.
Zhang
,
X.
Yong
, and
Y.
Chen
,
J. Nonlinear Math. Phys.
15
,
383
397
(
2008
).
7.
M. A.
Abdou
,
Nonlinear Dyn.
52
,
277
288
(
2008
).
8.
L.
Wang
,
Y. T.
Gao
,
X. L.
Gai
,
X.
Yu
, and
Z. Y.
Sun
,
J. Nonlinear Math. Phys.
17
,
197
211
(
2010
).
9.
S.
Guo
and
Y.
Zhou
,
Appl. Math. Comput.
215
,
3214
3221
(
2010
).
10.
G. D.
Lin
,
Y. T.
Gao
,
X. L.
Gai
, and
D. X.
Meng
,
Nonlinear Dyn.
64
,
197
206
(
2011
).
11.
M.
Wang
and
X.
Li
,
JAMP
2
,
823
827
(
2014
).
12.
S.
Zhang
,
M.
Liu
, and
B.
Xu
,
Therm. Sci.
21
,
137
144
(
2017
).
13.
M.
Arshad
,
A. R.
Seadawy
,
D.
Lu
, and
J.
Wang
,
Chinese J. Phys.
55
,
780
797
(
2017
).
14.
C.
Gu
,
Soliton theory and its applications
(
Zhejiang Publishing House of Science and Technology
,
Hangzhou
,
1990
).
15.
R. M.
Miura
,
J. Math. Phys.
9
,
1202
1204
(
1968
).
16.
R.
Conte
and
M.
Musette
,
J. Phys. A: Mathematical and General
25
,
5609
5623
(
1992
).
17.
E. J.
Parkes
,
B. R.
Duffy
, and
P. C.
Abbott
,
Phys. Lett. A
295
,
280
286
(
2002
).
18.
Y. Z.
Peng
,
Phys. Lett. A
314
,
401
408
(
2003
).
19.
J. H.
He
,
Chaos Solitons Fract.
26
,
695
700
(
2005
).
20.
S.
Zhang
and
T. C.
Xia
,
J. Phys. A: Mathematical and Theoretical
40
,
227
248
(
2007
).
21.
T.
Ozis
and
A.
Yildirim
,
Comput. Math. Appl.
54
,
1039
1042
(
2007
).
22.
E. M. E.
Zayed
and
K. A.
Gepreel
,
J. Math. Phys.
50
, p.
013502
(
2009
).
23.
H.
Zhang
,
Chaos Solitons Fract.
39
,
1020
1026
(
2009
).
24.
L. W.
An
,
C.
Hao
, and
Z. G.
Cai
,
Chinese Phys. B
18
,
400
404
(
2009
).
25.
A. J. M.
Jawad
,
M. D.
Petkovic
, and
A.
Biswas
,
Appl. Math. Comput.
217
,
869
877
(
2010
).
26.
M. M.
Miah
,
H. M. S.
Ali
,
M. A.
Akbar
, and
A. M.
Wazwaz
,
Eur. Phys. J. Plus
132
, p.
252
(
2017
).
27.
Y. J.
Yang
and
Y. M.
Zhao
,
Adv. Mat. Res.
1044-1045
,
1110
1112
(
2014
).
28.
K. A.
Gepreel
and
T. A.
Nofal
,
IJPAM
106
,
1003
1016
(
2016
).
29.
Y.
Zhang
,
L.
Zhang
, and
J.
Pang
,
Advances in Applied Mathematics
6
,
212
217
(
2017
).
30.
G.
Akram
and
N.
Mahak
,
Eur. Phys. J. Plus
133
, p.
212
(
2018
).
31.
S.
Sirisubtawee
and
S.
Koonprasert
,
Adv. Math. Phys.
2018
, p.
7628651
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.