Atanassov recommended the idea of intuitionistic fuzzy set, that is depicted with a membership function and a non-membership function, as an outcome simplifying Zadeh’s fuzzy sets which merely allocate a membership degree to each element. In the present paper, intuitionistic fuzzy divergence measure involving two parameters along with their proofs of validity is introduced. Further, it is shown that intuitionistic fuzzy divergence measure has monotonic decreasing behavior with respect to the two parameters. Finally, a numerical illustration associated to decision making is employed to prove feasibility and efficacy of suggested technique.

1.
L.A.
Zadeh
,
Inf. Control
,
8
,
338
353
(
1965
).
2.
C.E.
Shannon
,
Bell Syst.Tech.J.
,
27
,
623
656
(
1948
).
3.
A.
De Luca
and
S.
Termini
,
Inf. Control
,
20
,
301
312
(
1972
).
4.
S.
Kullback
and
R.A.
Leibler
,
Ann. Math.Stat.
,
22
,
79
86
(
1951
).
5.
D.
Bhandari
and
N.R.
Pal
,
Inf. Sciences
,
67
,
209
228
(
1993
).
6.
J.H.
Havrada
and
F.
Charvat
,
Kybernetika
3
,
30
31
(
1967
).
7.
K.T.
Atanassov
,
Fuzzy Sets Syst.
,
20
,
87
96
(
1986
).
8.
E.
Szmidt
and
J.
Kacprzyk
,
Lecture Notes in Comput. Sci.
,
2074
,
263
271
(
2001
).
9.
E.
Szmidt
and
J.
Kacprzyk
,
Notes Intuitionistic Fuzzy Sets
,
3
,
1
13
(
1997
).
10.
E.
Szmidt
and
J.
Kacprzyk
,
Fuzzy Sets Syst.
,
114
,
505
518
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.