Single-linkage is one of the algorithms in agglomerative clustering technique that can be used to detect outliers. The single-linkage algorithm combines two clusters with the closest pair of observations. Then, the clusters are combined into larger clusters, until all the observations are formed in the same cluster. In this study, Satari’s single-linkage algorithm method that utilised a circular distance based on the City-block distance as the similarity distance is used to detect multiple outliers for a circular regression model. The aim of this study is to investigate the applicability of the Satari’s single-linkage algorithm in detecting outliers for three different outlier scenarios which are outliers in u-space only, v-space only and both uv-spaces. The performance is measured and tested via simulation studies by calculating the “success” probability (pout), masking error (pmask) and swamping error (pswamp) for all outlier scenarios. It is found that the Satari’s single linkage method performed well in detecting outliers for all three different types of outlier scenarios considered in this study.

1.
M. S.
Yang
,
S. J.
Chang-Chien
and
H. C.
Kuo
, “
On mean shift clustering for directional data on a hypersphere
”, In
International Conference on Artificial Intelligence and Soft Computing
(pp.
809
818
), (
2014
).
2.
S. Z.
Satari
, Parameter Estimation and Outlier Detection for Some Types of Circular Model. PhD’s Thesis,
University of Malaya
(
2014
).
3.
N. F. M.
Di
and
S. Z.
Satari
, “
The Effect of Different Distance Measures in Detecting Outliers using Clustering-based Algorithm for Circular Regression Model
”,
AIP Conference Proceedings
1842
,
030016
(
2017
).
4.
N. F. M.
Di
,
S. Z.
Satari
, and
R.
Zakaria
, “
Detection of different outlier scenarios in circular regression model using single-linkage method
”,
Journal of Physics: Conference Series
890
012127
(
2017
).
5.
S. Z.
Satari
,
N. F. M.
Di
, and
R.
Zakaria
, “
The multiple outliers detection using agglomerative hierarchical methods in circular regression model
Journal of Physics: Conference Series
890
012152
(
2017
).
6.
A. H.
Abuzaid
,
A. G.
Hussin
, and
I. B.
Mohamed
, “
Identifying single outlier in linear circular regression model based on circular distance
”,
Journal of Applied Probability & Statistics
3
(
1
)
107
117
, (
2008
).
7.
A.
Rambli
,
I. B.
Mohamed
,
A. H.
Abuzaid
, and
A. G.
Hussin
, “
Identification of influential observations in circular regression model
”,
Proceedings of the Regional Conference on Statistical Sciences 2010 (RCSS’10)
(pp.
195
203
), (
2010
).
8.
A. H.
Abuzaid
,
A. G.
Hussin
,
A.
Rambli
, and
I. B.
Mohamed
, “
Statistics for a new test of discordance in circular data
Communications in Statistics-Simulation and Computation
41
(
10
) (pp.
1882
1890
), (
2012
).
9.
S.
Ibrahim
,
A.
Rambli
,
A. G.
Hussin
and
I.
Mohamed
, “
Outlier detection in a circular regression model using COVRATIO statistic
Communications in Statistics-Simulation and Computation
42
(
10
) (pp.
2270
2280
), (
2013
).
10.
T. D.
Down
, and
K. V.
Mardia
, “
Circular regression
Biometrika
89
(
3
) (pp.
683
697
), (
2002
).
11.
S. R.
Jammalamadaka
, and
A.
SenGupta
Topics in circular statistics
World Scientific Publishing
(
2001
).
12.
G.
Goujun
,
M.
Chaoqun
and
W.
Jianhong
,
Data Clustering Theory, Algorithms and Applications
ASA-SIAM series on statistics and applied probability
20
(
2007
).
13.
D. M.
Sebert
,
D. C.
Montgomery
, and
D. A.
Rollier
, “
A clustering algorithm for identifying multiple outliers in linear regression
Computational Statistics and Data Analysis
27
(pp.
461
484
), (
1998
).
This content is only available via PDF.
You do not currently have access to this content.