This paper is concerned with the comprehensive procedure of preparing, morphological characterization and thermal property evaluation of nanoparticle blended polymer composites. Polymer composites are intended to consecrate the thermal energy storage applications. Linear low-density polyethylene (LLDPE) is incorporated with functionalized graphene with different concentrations (1, 3 and 5%). The morphological study revealed compatibility of polymer composites, at lower concentrations (1-3%,) it shows homogenous dispersion, but above threshold limit the particle distribution is non-homogenous with coarse surface structures. Higher concentration (5%) of nanoparticles emulsifies the molecules and generates micelles between themselves. The thermal conductivity of the polymer composite is significantly enhanced with the reduction of specific heat. At lower concentrations polymer exhibits homogeneous dispersion and the interfacial interaction is comparatively higher, optimal concentration (3%,) of nanoparticle provides favorable results and hence polymer composites with ideal concentration can be utilized for thermal energy storage applications.

1.
Sarn
,
A.
,
Alkan
,
C.
,
Bilgin
,
C.
&
Bicer
,
A.
Preparation, Characterization and Thermal Energy Storage Properties of Micro/Nano Encapsulated Phase Change Material with Acrylic-Based Polymer
.
Polym. Sci. Ser. B
60
,
58
68
(
2018
).
2.
Fashandi
,
M.
&
Leung
,
S. N.
Preparation and characterization of 100% bio-based polylactic acid/palmitic acid microcapsules for thermal energy storage
.
Mater. Renew. Sustain. Energy
6
,
14
(
2017
).
3.
Kazerouni
,
S. S.
,
Kalaee
,
M.
,
Sharif
,
F.
&
Mazinani
,
S.
Synthesis and characterization of poly(ethylene tetrasulfide)/graphene oxide nanocomposites by in situ polymerization method
.
J. Sulfur Chem.
37
, (
2016
).
4.
Noorunnisa Khanam
Patan
,
Mariam Al Ali
Al Maadeed
,
Mabrouk
Ouederni
,
Dan
Sun
,
Andrew
Hamilton
,
Eileen
Harkin-Jones
,
Energy and Environment Pillar Beatriz MayoralPillar, B. Arc ’
16
.
2
4
(
2016
).
5.
Poltimäe
,
T.
,
Tarasova
,
E.
,
Krumme
,
A.
,
Roots
,
J.
&
Viikna
,
A.
Thermal Analyses of blends of hyperbranched linear low-density polyethylene (LLDPE) with high-density polyethylene and LLDPE prepared by dissolving method
.
Materials Science Medziagotyra
17
,
254
259
(
2011
).
6.
Tarani
,
E.
Papageorgiou
D.G.
Valles
C
,
Wurm
A
,
Terzopouloud
Z
,
Bikiarisd
D.N.
,
Insights into crystallization and melting of high density polyethylene/graphene nanocomposites studied by fast scanning calorimetry
.
Polym. Test.
67
,
349
358
(
2018
).
7.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
&
Shaukat
,
M. M.
Melting enhancement of a phase change material with presence of a metallic mesh
.
Appl. Therm. Eng.
79
,
163
173
(
2015
).
8.
Das
,
T. K.
&
Prusty
,
S.
Graphene-Based Polymer Composites and Their Applications
.
Polym. - Plast. Technol. Eng.
52
,
319
331
(
2013
).
9.
Goyal
,
M.
 et al 
Fabrication and characterisation of low density polyethylene (LDPE)/multi walled carbon nanotubes (MWCNTs) nano-composites
.
Perspect. Sci.
8
,
403
405
(
2016
).
10.
Majeed
,
K.
,
Al Ali AlMaadeed
,
M.
&
Zagho
,
M. M.
Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films
.
Chinese J. Chem. Eng.
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.